【題目】設(shè)l為曲線C:y= 在點(diǎn)(1,0)處的切線.
(1)求l的方程;
(2)證明:除切點(diǎn)(1,0)之外,曲線C在直線l的下方.
【答案】
(1)解:∵
∴
∴l(xiāng)的斜率k=y′|x=1=1
∴l(xiāng)的方程為y=x﹣1
(2)證明:令f(x)=x(x﹣1)﹣lnx,(x>0)
曲線C在直線l的下方,即f(x)=x(x﹣1)﹣lnx>0,
則f′(x)=2x﹣1﹣ =
∴f(x)在(0,1)上單調(diào)遞減,在(1,+∞)上單調(diào)遞增,又f(1)=0
∴x∈(0,1)時(shí),f(x)>0,即 <x﹣1
x∈(1,+∞)時(shí),f(x)>0,即 <x﹣1
即除切點(diǎn)(1,0)之外,曲線C在直線l的下方
【解析】(1)求出切點(diǎn)處切線斜率,代入代入點(diǎn)斜式方程,可以求解;(2)利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,進(jìn)而分析出函數(shù)圖象的形狀,可得結(jié)論.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD與正三角形BCE的邊長(zhǎng)均為2,且平面ABCD⊥平面BCE,平面ABCD,.
(I)求證:平面ABCD;
(II)求證:平面ACF⊥平面BDF.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形OABC中,O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(10,0),點(diǎn)C的坐標(biāo)為(0,10),分別將線段OA和AB十等分,分點(diǎn)分別記為A1 , A2 , …,A9和B1 , B2 , …,B9 , 連接OBi , 過(guò)Ai作x軸的垂線與OBi , 交于點(diǎn) .
(1)求證:點(diǎn) 都在同一條拋物線上,并求拋物線E的方程;
(2)過(guò)點(diǎn)C作直線l與拋物線E交于不同的兩點(diǎn)M,N,若△OCM與△OCN的面積之比為4:1,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校課題組為了研究學(xué)生的數(shù)學(xué)成績(jī)和物理成績(jī)之間的關(guān)系,隨機(jī)抽取高二年級(jí)20名學(xué)生某次考試成績(jī)(百分制)如下表所示:
序號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
數(shù)學(xué)成績(jī) | 95 | 75 | 80 | 94 | 92 | 65 | 67 | 84 | 98 | 71 | 67 | 93 | 64 | 78 | 77 | 90 | 57 | 83 | 72 | 83 |
物理成績(jī) | 90 | 63 | 72 | 87 | 91 | 71 | 58 | 82 | 93 | 81 | 77 | 82 | 48 | 85 | 69 | 91 | 61 | 84 | 78 | 86 |
若數(shù)學(xué)成績(jī)90分(含90分)以上為優(yōu)秀,物理成績(jī)85(含85分)以上為優(yōu)秀,則有多少把握認(rèn)為學(xué)生的數(shù)學(xué)成績(jī)與物理成績(jī)有關(guān)系( )
A. 95% B. 97.5% C. 99.5% D. 99.9%
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,橢圓的左、右焦點(diǎn)分別為,,為橢圓上一點(diǎn),且垂直于軸,連結(jié)并延長(zhǎng)交橢圓于另一點(diǎn),設(shè).
(1)若點(diǎn)的坐標(biāo)為,求橢圓的方程及的值;
(2)若,求橢圓的離心率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知A,B,C是橢圓W: 上的三個(gè)點(diǎn),O是坐標(biāo)原點(diǎn).
(1)當(dāng)點(diǎn)B是W的右頂點(diǎn),且四邊形OABC為菱形時(shí),求此菱形的面積;
(2)當(dāng)點(diǎn)B不是W的頂點(diǎn)時(shí),判斷四邊形OABC是否可能為菱形,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班級(jí)有50名學(xué)生,其中有30名男生和20名女生,隨機(jī)詢問(wèn)了該班五名男生和五名女生在某次數(shù)學(xué)測(cè)驗(yàn)中的成績(jī),五名男生的成績(jī)分別為86,94,88,92,90,五名女生的成績(jī)分別為88,93,93,88,93,下列說(shuō)法正確的是( )
A.這種抽樣方法是一種分層抽樣
B.這種抽樣方法是一種系統(tǒng)抽樣
C.這五名男生成績(jī)的方差大于這五名女生成績(jī)的方差
D.該班男生成績(jī)的平均數(shù)大于該班女生成績(jī)的平均數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,圓錐頂點(diǎn)為P,底面圓心為O,其母線與底面所成的角為22.5°,AB和CD是底面圓O上的兩條平行的弦,軸OP與平面PCD所成的角為60°,
(1)證明:平面PAB與平面PCD的交線平行于底面;
(2)求cos∠COD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列{an}的前n項(xiàng)和Sn滿足Sn+1=a2Sn+a1 , 其中a2≠0.
(1)求證:{an}是首項(xiàng)為1的等比數(shù)列;
(2)若a2>﹣1,求證 ,并給出等號(hào)成立的充要條件.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com