已知向量,設函數(shù).
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)在中,角、、的對邊分別為、、,且滿足,,求的值.
(1);(2)
【解析】
試題分析:(1)利用數(shù)量積的坐標表示,先計算,然后代入中,利用正弦的二倍角公式和降冪公式,將函數(shù)解析式化為,然后利用復合函數(shù)的單調(diào)性和正弦函數(shù)的單調(diào)區(qū)間,求出函數(shù)的單調(diào)遞增區(qū)間;(2)三角形問題中,涉及邊角混合的式子,往往進行邊角轉(zhuǎn)換,或轉(zhuǎn)換為邊的代數(shù)式,或轉(zhuǎn)換為三角函數(shù)問題處理.將利用正弦定理轉(zhuǎn)換為,同時結(jié)合已知和余弦定理得,,從而求,進而求的值.
試題解析:(1)
令 6分
所以所求增區(qū)間為 7分
(2)由,, 8分
,即 10分
又∵, 11分 12分
考點:1、正弦定理;2、余弦定理;3、三角函數(shù)的圖象和性質(zhì).
科目:高中數(shù)學 來源:2013-2014學年湖北省天門市畢業(yè)生四月調(diào)研考試理科數(shù)學試卷(解析版) 題型:解答題
定義:若在上為增函數(shù),則稱為“k次比增函數(shù)”,其中. 已知其中e為自然對數(shù)的底數(shù).
(1)若是“1次比增函數(shù)”,求實數(shù)a的取值范圍;
(2)當時,求函數(shù)在上的最小值;
(3)求證:.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年湖北省天門市畢業(yè)生四月調(diào)研考試文科數(shù)學試卷(解析版) 題型:選擇題
①若“pq”為真命題,則p、q均為真命題( );
②“若”的否命題為“若,則”;
③“”的否定是“”;
④“”是“”的充要條件. 其中不正確的命題是
A.①② B.②③ C.①③ D.③④
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年湖北省七市(州)高三年級聯(lián)合考試理科數(shù)學試卷(解析版) 題型:選擇題
設兩條直線的方程分別為,已知是方程的兩個實根,且,則這兩條直線之間的距離的最大值和最小值分別是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年湖北省七市(州)高三年級聯(lián)合考試理科數(shù)學試卷(解析版) 題型:選擇題
已知全集U=R,集合,B=,則A∪B=( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年湖北省七市(州)高三年級聯(lián)合考試文科數(shù)學試卷(解析版) 題型:填空題
某程序框圖如圖所示,判斷框內(nèi)為“?”,為正整數(shù),若輸出的,則判斷框內(nèi)的________;
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年湖北省七市(州)高三年級聯(lián)合考試文科數(shù)學試卷(解析版) 題型:選擇題
將函數(shù)圖像上所有點向左平移個單位,再將各點橫坐標縮短為原來的倍,得到函數(shù)f(x),則( )
A.f(x)在單調(diào)遞減 B.f(x)在單調(diào)遞減
C.f(x)在單調(diào)遞增 D.f(x)在單調(diào)遞增
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年浙江省高三高考模擬沖刺卷(提優(yōu)卷)(三)理科數(shù)學試卷(解析版) 題型:填空題
已知函數(shù)f(x)=eax-x,其中a≠0.若對一切x∈R,f(x)≥0恒成立,則a的取值集合 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com