【題目】在幾何體中,如圖,四邊形為平行四邊形,,平面平面,平面,.

1)求證:;

2)求二面角的余弦值.

【答案】1)見解析(2

【解析】

1)由,得到平面,平面,根據(jù)平面平面,由面面平行的性質(zhì)定理得到,進而得到四邊形為平行四邊形,再根據(jù)平面,得到,由,得到,同理得到,由線面垂直的判定定理得到平面得證.

2)由(1)可知,直線、、兩兩垂直.為坐標原點,以、、為坐標軸建立的空間直角坐標系,設(shè),則,,分別求得平面和平面的一個法向量,代入求解.

1)證明:由,

可知、、四點確定平面,、、、四點確定平面.

∵平面平面,且平面平面,

平面平面

,四邊形為平行四邊形.

同理可得,四邊形為平行四邊形,四邊形為平行四邊形.

平面,平面

,于是.

,,

.

平面,平面.

平面,而平面,

.

2)由(1)可知,直線、兩兩垂直.為坐標原點,以、為坐標軸建立的空間直角坐標系.

不妨設(shè),則,.

,,,,,

,,,

設(shè)平面的一個法向量為

,則,

,則,

∴平面的一個法向量為.

設(shè)平面的一個法向量為

,則

,則,

∴平面的一個法向量為.

∴二面角的余弦值為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線,過點且互相垂直的兩條動直線、與拋物線分別交于、.

1)求的取值范圍;

2)記線段的中點分別為、,求證:直線恒過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),若函數(shù)上存在兩個極值點.

(Ⅰ)求實數(shù)的取值范圍;

(Ⅱ)證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】人們通常以分貝(符號是)為單位來表示聲音強度的等級,30~40分貝是較理想的安靜環(huán)境,超過50分貝就會影響睡眠和休息,70分貝以上會干擾談話,長期生活在90分貝以上的嗓聲環(huán)境,會嚴重影響聽力和引起神經(jīng)衰弱、頭疼、血壓升高等疾病,如果突然暴露在高達150分貝的噪聲環(huán)境中,聽覺器官會發(fā)生急劇外傷,引起鼓膜破裂出血,雙耳完全失去聽力,為了保護聽力,應(yīng)控制噪聲不超過90分貝,一般地,如果強度為的聲音對應(yīng)的等級為,則有,則的聲音與的聲音強度之比為(

A.10B.100C.1000D.10000

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】直四棱柱被平面所截得到如圖所示的五面體,,

1)求證:∥平面;

2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓與圓相外切,且與直線相切.

1)記圓心的軌跡為曲線,求的方程;

2)過點的兩條直線與曲線分別相交于點,線段的中點分別為.如果直線的斜率之積等于1,求證:直線經(jīng)過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點為,若△的三個頂點都在拋物線上,且,則稱該三角形為“核心三角形”.

1)是否存在“核心三角形”,其中兩個頂點的坐標分別為?請說明理由;

2)設(shè)“核心三角形”的一邊所在直線的斜率為4,求直線的方程;

3)已知△是“核心三角形”,證明:點的橫坐標小于2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知A(-2,0),B(2,0)為橢圓C的左、右頂點,F(xiàn)為其右焦點,P是橢圓C上異于A,B的動點,且△APB面積的最大值為。

(Ⅰ)求橢圓C的方程;

(Ⅱ)直線AP與橢圓在點B處的切線交于點D,當點P在橢圓上運動時,求證:以BD為直徑的圓與直線PF恒相切.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某保險公司為客戶定制了5個險種:甲,一年期短險;乙,兩全保險;丙,理財類保險;丁,定期壽險:戊,重大疾病保險,各種保險按相關(guān)約定進行參保與理賠.該保險公司對5個險種參?蛻暨M行抽樣調(diào)查,得出如下的統(tǒng)計圖例,以下四個選項錯誤的是(

A.54周歲以上參保人數(shù)最少B.1829周歲人群參保總費用最少

C.丁險種更受參保人青睞D.30周歲以上的人群約占參保人群的80%

查看答案和解析>>

同步練習冊答案