(2012•寧國市模擬)某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實驗室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:
日    期 12月1日 12月2日 12月3日 12月4日 12月5日
溫差x(°C) 10 11 13 12 8
發(fā)芽數(shù)y(顆) 23 25 30 26 16
該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對被選取的2組數(shù)據(jù)進行檢驗.
(1)求選取的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;
(2)若選取的是12月1日與12月5日的兩組數(shù)據(jù),請根據(jù)12月2日至12月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;并預報當溫差為9 0C時的種子發(fā)芽數(shù).
分析:(1)根據(jù)題意列舉出從5組數(shù)據(jù)中選取2組數(shù)據(jù)共有10種情況,每種情況都是可能出現(xiàn)的,滿足條件的事件包括的基本事件有6種.根據(jù)等可能事件的概率做出結(jié)果.
(2)根據(jù)所給的數(shù)據(jù),先做出x,y的平均數(shù),即做出本組數(shù)據(jù)的樣本中心點,根據(jù)最小二乘法求出線性回歸方程的系數(shù),寫出線性回歸方程并進行預報.
解答:解:(1)設(shè)抽到不相鄰的兩組數(shù)據(jù)為事件A,從5組數(shù)據(jù)中選取2組數(shù)
據(jù)共有10種情況:(1,2)(1,3)(1,4)(1,5)(2,3)
(2,4)(2,5)(3,4)(3,5)(4,5),…(3分)
其中數(shù)據(jù)為12月份的日期數(shù).每種情況都是可能出現(xiàn)的,
事件A包括的基本事件有6種.
∴P(A)=
3
5

∴選取的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率是
3
5
…(6分)
(2)由數(shù)據(jù),求得 
.
x
=12
,
.
y
=27
.…(8分)
由公式,求得b=
5
2
,a=
.
y
-b
.
x
=-3
∴y關(guān)于x的線性回歸方程為
?
y
=
5
2
x-3.…(10分)
由此可以預報當溫差為9 0C時的種子發(fā)芽數(shù)為19或20顆.…(12分)
點評:本題考查等可能事件的概率,考查線性回歸方程的求法,考查最小二乘法,考查回歸分析的初步應(yīng)用,是一個綜合題目.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2012•寧國市模擬)已知lgx+lgy=1,則
8
x
+
5
y
的最小值是
4
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•寧國市模擬)已知A={x|y=lo
g
x
2
},B={y|y=2x,x>0}
,則CAB=(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•寧國市模擬)下列命題中正確的是
②③⑤
②③⑤
 (寫出所有正確命題的編號)
①y=sinx(x∈R),在第一象限是增函數(shù);
②對任意△ABC,cosA+cosB>0恒成立;
③tanx=0是tan2x=0的充分但不必要條件;
④y=|sinx|和y=sin|x|都是R上周期函數(shù);
⑤y=tanx的圖象關(guān)于點(
2
,0)
,(k∈Z)成中心對稱.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•寧國市模擬)已知橢圓
x2
a2
+
y2
b2
=1
(a>b>0)經(jīng)過點M(
3
2
,
6
),它的焦距為2,它的左、右頂點分別為A1,A2,P1是該橢圓上的一個動點(非頂點),點P2 是點P1關(guān)于x軸的對稱點,直線A1P1與A2P2相交于點E.
(Ⅰ)求該橢圓的標準方程.
(Ⅱ)求點E的軌跡方程.

查看答案和解析>>

同步練習冊答案