【題目】上饒某中學(xué)研究性學(xué)習(xí)小組為調(diào)查市民喜歡觀看體育節(jié)目是否與性別有關(guān),隨機抽取了55名市民,得數(shù)據(jù)如下表:

喜歡

不喜歡

合計

20

5

25

10

20

30

合計

30

25

55

(1)判斷是否有99.5%的把握認為喜歡觀看體育節(jié)目與性別有關(guān)?

(2)用分層抽樣的方法從喜歡觀看體育節(jié)目的市民中隨機抽取6人作進一步調(diào)查,將這6位市民作為一個樣本,從中任選2人,求男市民人數(shù)的分布列和期望.

下面的臨界值表供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

【答案】(1)有的把握認為喜歡觀看體育節(jié)目與性別有關(guān);(2)分布列見解析,.

【解析】

試題分析:(1)由公式求出,從而得到有的把握認為喜歡觀看體育節(jié)目與性別有關(guān);(2)設(shè)所抽樣本中有個男市民,則,得人,所以樣本中有個男市民,個女市民,隨機變量的所有取值情形:分別求出相應(yīng)的概率,由此能求出的分布列和數(shù)學(xué)期望.

試題解析:(1)由公式,

所以有的把握認為喜歡觀看體育節(jié)目與性別有關(guān).

(2)設(shè)所抽樣本中有個男市民,則,得

所以樣本中有個男市民, 個女市民,隨機變量的所有取值情形:,再分別求概率:

,

從而得到的分布列為:

所以

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市戶居民的月平均用電量(單位:度),以, , , , 分組的頻率分布直方圖如圖.

1)求直方圖中的值;

2)求月平均用電量的眾數(shù)和中位數(shù);

3)在月平均用電量為, , 的四組用戶中,用分層抽樣的方法抽取戶居民,則月平均用電量在的用戶中應(yīng)抽取多少戶?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在扶貧活動中,為了盡快脫貧無債務(wù)致富,企業(yè)甲將經(jīng)營狀況良好的某種消費品專賣店以5.8萬元的優(yōu)惠價格轉(zhuǎn)讓給了尚有5萬元無息貸款沒有償還的小型企業(yè)乙,并約定從該店經(jīng)營的利潤中,首先保證企業(yè)乙的全體職工每月最低生活費的開支3 600元后,逐步償還轉(zhuǎn)讓費不計息.在甲提供的資料中:這種消費品的進價為每件14元;該店月銷量Q百件與銷售價格P的關(guān)系如圖所示;每月需各種開支2 000元.

1當商品的價格為每件多少元時,月利潤扣除職工最低生活費的余額最大?并求最大余額;

2企業(yè)乙只依靠該店,最早可望在幾年后脫貧?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an},{bn},Sn為數(shù)列{an}的前n項和,向量=(1,bn), =(an-1,Sn), //

(1)若bn=2,求數(shù)列{an}通項公式;

(2)若 =0.

①證明:數(shù)列{an}為等差數(shù)列;

②設(shè)數(shù)列{cn}滿足,問是否存在正整數(shù)lm(l<m,且l≠2,m≠2),使得成等比數(shù)列,若存在,求出l、m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知{an}是一個公差為d(d≠0)的等差數(shù)列,它的前10項和S10=110,且a1,a2,a4成等比數(shù)列。

(1)證明:a1=d;

(2)求公差d的值和數(shù)列{an}的通項公式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱柱中,側(cè)棱與底面垂直, ,點分別為的中點.

(1)證明: 平面;

證明: 平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了得到函數(shù)y=2x-3-1的圖象,只需把函數(shù)y=2x的圖象上所有的點(  )

A. 向右平移3個單位長度,再向下平移1個單位長度

B. 向左平移3個單位長度,再向下平移1個單位長度

C. 向右平移3個單位長度,再向上平移1個單位長度

D. 向左平移3個單位長度,再向上平移1個單位長度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司生產(chǎn)一批產(chǎn)品需要原材料500噸,每噸原材料可創(chuàng)造利潤12萬元,該公司通過設(shè)備升級,生產(chǎn)這批產(chǎn)品所需原材料減少了噸,且每噸原材料創(chuàng)造的利潤提高了;若將少用的噸原材料全部用于生產(chǎn)公司新開發(fā)的產(chǎn)品,每噸原材料創(chuàng)造的利潤為萬元,其中

(1)若設(shè)備升級后生產(chǎn)這批產(chǎn)品的利潤不低于原來生產(chǎn)該批產(chǎn)品的利潤,求的取值范圍;

(2)若生產(chǎn)這批產(chǎn)品的利潤始終不高于設(shè)備升級后生產(chǎn)這批產(chǎn)品的利潤,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】ABC中,角A,B,C所對的邊分別為a,b,c,且acosC+ccosA=2bcosA.
(1)求角A的值;
(2)若, ,求ABC的面積S.

查看答案和解析>>

同步練習(xí)冊答案