【題目】已知函數(shù)y=f(x﹣1)的圖象關(guān)于點(diǎn)(1,0)對(duì)稱,且當(dāng)x∈(﹣∞,0)時(shí),f(x)+xf′(x)<0成立(其中f′(x)是f(x)的導(dǎo)函數(shù)),若a=(30.3)f(30.3),b=(logπ3)f(logπ3),c=(log3 )f(log3 ),則 a,b,c的大小關(guān)系是(
A.a>b>c
B.c>a>b
C.c>b>a
D.a>c>b

【答案】B
【解析】解:∵當(dāng)x∈(﹣∞,0)時(shí)不等式f(x)+xf′(x)<0成立,即:(xf(x))′<0,
∴xf(x)在 (﹣∞,0)上是減函數(shù).
又∵函數(shù)y=f(x﹣1)的圖象關(guān)于點(diǎn)(1,0)對(duì)稱,
∴函數(shù)y=f(x)的圖象關(guān)于點(diǎn)(0,0)對(duì)稱,
∴函數(shù)y=f(x)是定義在R上的奇函數(shù)
∴xf(x)是定義在R上的偶函數(shù)
∴xf(x)在 (0,+∞)上是增函數(shù).
又∵30.3>1>log23>0> =﹣2,
2=﹣ ,
∴(﹣ )f(﹣ )>30.3f(30.3)>(logπ3)f(logπ3),即( )f( )>30.3f(30.3)>(logπ3)f(logπ3)
即:c>a>b
故選B.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用函數(shù)單調(diào)性的性質(zhì)和基本求導(dǎo)法則的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間 ,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集;若兩個(gè)函數(shù)可導(dǎo),則它們和、差、積、商必可導(dǎo);若兩個(gè)函數(shù)均不可導(dǎo),則它們的和、差、積、商不一定不可導(dǎo).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,幾何體是圓柱的一部分,它是由矩形ABCD(及其內(nèi)部)以AB邊所在直線為旋轉(zhuǎn)軸旋轉(zhuǎn)120°得到的,G是 的中點(diǎn).(12分)
(Ⅰ)設(shè)P是 上的一點(diǎn),且AP⊥BE,求∠CBP的大小;
(Ⅱ)當(dāng)AB=3,AD=2時(shí),求二面角E﹣AG﹣C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】3名男生、3名女生站成一排:

(1)女生都不站在兩端,有多少不同的站法?

(2)三名男生要相鄰,有多少種不同的站法?

(3)三名女生互不相鄰,三名男生也互不相鄰,有多少種不同的站法?

(4)女生甲,女生乙都不與男生丙相鄰,有多少種不同的站法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某研究機(jī)構(gòu)對(duì)高三學(xué)生的記憶力x和判斷力y進(jìn)行統(tǒng)計(jì)分析,得下表數(shù)據(jù):

(1)請(qǐng)根據(jù)表中提供的數(shù)據(jù),用相關(guān)系數(shù)說(shuō)明的線性相關(guān)程度;(結(jié)果保留小數(shù)點(diǎn)后兩位,參考數(shù)據(jù):

(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;

(3)試根據(jù)求出的線性回歸方程,預(yù)測(cè)記憶力為9的同學(xué)的判斷力.

參考公式:;相關(guān)系數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}中,a1=1,an+1=an+n,利用如圖所示的程序框圖計(jì)算該數(shù)列的第10項(xiàng),則判斷框中應(yīng)填的語(yǔ)句是(

A.n>10
B.n≤10
C.n<9
D.n≤9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}中,a1=1,an+1=an+n,利用如圖所示的程序框圖計(jì)算該數(shù)列的第10項(xiàng),則判斷框中應(yīng)填的語(yǔ)句是(

A.n>10
B.n≤10
C.n<9
D.n≤9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),且函數(shù)是偶函數(shù),設(shè)

(1)求的解析式;

(2)若不等式≥0在區(qū)間(1,e2]上恒成立,求實(shí)數(shù)的取值范圍;

(3)若方程有三個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察下列等式:

按此規(guī)律,第個(gè)等式可為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某快餐連鎖店招聘外賣騎手,該快餐連鎖店提供了兩種日工資方案:方案(1)規(guī)定每日底薪50元,快遞業(yè)務(wù)每完成一單提成3元;方案(2)規(guī)定每日底薪100元,快遞業(yè)務(wù)的前44單沒(méi)有提成,從第45單開始,每完成一單提成5元.該快餐連鎖店記錄了每天騎手的人均業(yè)務(wù)量.現(xiàn)隨機(jī)抽取100天的數(shù)據(jù),將樣本數(shù)據(jù)分為[ 25,35),[35,45),[45,55),[55,65),[65,75),[75,85),[85,95]七組,整理得到如圖所示的頻率分布直方圖。

(1)隨機(jī)選取一天,估計(jì)這一天該連鎖店的騎手的人均日快遞業(yè)務(wù)量不少于65單的概率;

(2)若騎手甲、乙選擇了日工資方案(1),丙、丁選擇了日工資方案(2).現(xiàn)從上述4名騎手中隨機(jī)選取2人,求至少有1名騎手選擇方案(1)的概率;

查看答案和解析>>

同步練習(xí)冊(cè)答案