【題目】已知△ABC的三邊長為a,b,c,則下列命題中真命題是( )
A.“a2+b2>c2”是“△ABC為銳角三角形”的充要條件
B.“a2+b2<c2”是“△ABC為鈍角三角形”的必要不充分條件
C.“a3+b3=c3”是“△ABC為銳角三角形”的既不充分也不必要條件
D.“ + = ”是“△ABC為鈍角三角形”的充分不必要條件
【答案】C
【解析】解:若a2+b2>c2 , 由余弦定理可知cosC= >0,即角C為銳角,不能推出其他角均為銳角,故A為假命題; 若a2+b2<c2 , 由余弦定理可知cosC= <0,則C為鈍角,但若三角形為鈍角三角形,鈍角不一定是C,故“a2+b2<c2”是“△ABC為鈍角三角形”的充分不必要條件,故B為假命題.
若 ,由余弦定理可知cosC= =0,則C為直角,故“ ”是“△ABC為鈍角三角形”的即不充分也不必要條件,故D為假命題;
a3+b3=c3”三角形即有銳角的可能,也有鈍角的可能,故C為真命題.
故選C.
【考點精析】通過靈活運用余弦定理的定義,掌握余弦定理:;;即可以解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】已知向量 =(3,﹣4), =(6,﹣3), =(5﹣x,﹣3﹣y), =(4,1)
(1)若四邊形ABCD是平行四邊形,求x,y的值;
(2)若△ABC為等腰直角三角形,且∠B為直角,求x,y的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等差數(shù)列前5項和為50, ,數(shù)列的前項和為, , .
(Ⅰ)求數(shù)列, 的通項公式;
(Ⅱ)若數(shù)列滿足, ,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù),是定義域為R上的奇函數(shù).
(1)求的值;
(2)已知,函數(shù),,求的值域;
(3)若,試問是否存在正整數(shù),使得對恒成立?若存在,請求出所有的正整數(shù);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某電影院共有1000個座位,票價不分等次,根據(jù)影院的經(jīng)營經(jīng)驗,當每張票價不超過10元時,票可全售出;當每張票價高于10元時,每提高1元,將有30張票不能售出,為了獲得更好的收益,需給影院定一個合適的票價,需符合的基本條件是:①為了方便找零和算賬,票價定為1元的整數(shù)倍;②電影院放一場電影的成本費用支出為5750元,票房的收入必須高于成本支出,用x(元)表示每張票價,用y(元)表示該影院放映一場的凈收入(除去成本費用支出后的收入)
問:
(1)把y表示為x的函數(shù),并求其定義域;
(2)試問在符合基本條件的前提下,票價定為多少時,放映一場的凈收人最多?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線y2=4x的焦點為F,過點F的直線交拋物線于A,B兩點. (Ⅰ)若 ,求直線AB的斜率;
(Ⅱ)設(shè)點M在線段AB上運動,原點O關(guān)于點M的對稱點為C,求四邊形OACB面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】【2017江西師范大學附屬中學三模】已知函數(shù)是自然對數(shù)的底數(shù)).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若,當時,求函數(shù)的最大值;
(3)若且,求證: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某種產(chǎn)品的廣告費支出x與銷售額y(單位:萬元)之間有如下對應(yīng)數(shù)據(jù):
P(k2>k) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.83 |
x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |
(Ⅰ)畫出散點圖;
(Ⅱ)求回歸直線方程;
(Ⅲ)試預測廣告費支出為10萬元時,銷售額多大?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com