已知函數(shù)數(shù)學公式上為增函數(shù),且θ∈(0,π),數(shù)學公式,m∈R.
(1)求θ的值;
(2)當m=0時,求函數(shù)f(x)的單調(diào)區(qū)間和極值;
(3)若在[1,e]上至少存在一個x0,使得f(x0)>g(x0)成立,求m的取值范圍.

解:(1)∵函數(shù)上為增函數(shù),
∴g′(x)=-+≥0在[1,+∞)上恒成立,
≥0,
∵θ∈(0,π),∴sinθ>0,
故要使xsinθ-1≥0在[1,+∞)恒成立,
只需1×sinθ-1≥0,即sinθ≥1,只需sinθ=1,
∵θ∈(0,π),∴θ=
(2)f(x)的定義域為(0,+∞).
當m=0時,f(x)=,f′(x)=,
當0<x<2e-1時,f′(x)>0,f(x)單調(diào)遞增,當x>2e-1時,f′(x)<0,f(x)單調(diào)遞減;
所以f(x)的增區(qū)間是(0,2e-1),減區(qū)間是(2e-1,+∞),當x=2e-1時,f(x)取得極大值f(2e-1)=-1-ln(2e-1).
(3)令F(x)=f(x)-g(x)=mx--2lnx,
①當m≤0時,x∈[1,e],mx-≤0,-2lnx-<0,
∴在[1,e]上不存在一個x0,使得f(x0)>g(x0)成立.
②當m>0時,F(xiàn)′(x)=m+-=
∵x∈[1,e],∴2e-2x≥0,mx2+m>0,
∴F′(x)>0在[1,e]恒成立.
故F(x)在[1,e]上單調(diào)遞增,
F(x) max=F(e)=me--4,
只要me--4>0,解得m>
故m的取值范圍是(,+∞)
分析:(1)由函數(shù)上為增函數(shù),得g′(x)=-+≥0在[1,+∞)上恒成立,由此能求出θ的值.
(2)當m=0時,求出f(x)、f′(x),在定義域內(nèi)解不等式f′(x)>0,f′(x)<0得到單調(diào)區(qū)間,由極值定義可得極值;
(3)令F(x)=f(x)-g(x)=mx--2lnx,分m≤0,m>0兩種情況進行討論,由題意知,只要在[1,e]上F(x) max>0即可;
點評:本題考查利用導數(shù)求閉區(qū)間上函數(shù)的最值,考查運算求解能力,推理論證能力;考查化歸與轉(zhuǎn)化思想.對數(shù)學思維的要求比較高,有一定的探索性.綜合性強,難度大,是高考的重點.解題時要認真審題,仔細解答.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sin(π-2x),g(x)=2cos2x,給出下列四個結(jié)論:
①函數(shù)f(x)在區(qū)間[
π
4
,
π
2
]上為增函數(shù)
②函數(shù)y=f(x)+g(x)的最小正周期為2π
③函數(shù)y=f(x)+g(x)的圖象關(guān)于直線x=
π
8
對稱
④將函數(shù)f(x)的圖象向右平移
π
2
個單位,再向上平移1個單位得到函數(shù)g(x)的圖象.
其中正確的結(jié)論是
.(寫出所有正確結(jié)論的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•河南模擬)已知函數(shù)y=f (x)在R上是偶函數(shù),對任意x∈R都有f(x+6)=f(x)+f(3),當x1,x2∈[0,3]且x1≠x2時,
f (x1)-f (x2
x1-x2
> 0
,給出如下命題:f(2a-x)=f(x)
①f(3)=0    
②直線x=-6是y=f(x)圖象的一條對稱軸   
③函數(shù)y=f(x)在[-9,-6]上為增函數(shù)
④函數(shù)y=f(x)在[-9,9]上有四個零點.
其中所有正確命題的序號為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(理科做)已知函數(shù)f(x)=x2-ax+3在(0,1)上為減函數(shù),函數(shù)g(x)=x2-alnx在區(qū)間(1,2)上為增函數(shù).
(1)求實數(shù)a的值;
(2)當-1<m<0時,判斷方程f(x)=2g(x)+m的解的個數(shù),并說明理由;
(3)設函數(shù)y=f(bx)(其中0<b<1)的圖象C1與函數(shù)y=g(x)的圖象C2交于P、Q,過線段PQ的中點作x軸的垂線分別交C1、C2于點M、N.證明:曲線C1在點M處的切線與曲線C2在點N處的切線不平行.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年浙江省寧波市海曙區(qū)效實中學高三(上)期中數(shù)學試卷(文科)(解析版) 題型:選擇題

已知函數(shù)f(x)=sin(π-2x),g(x)=2cos2x,則下列結(jié)論正確的是( )
A.函數(shù)f(x)在區(qū)間[]上為增函數(shù)
B.函數(shù)y=f(x)+g(x)的最小正周期為2π
C.函數(shù)y=f(x)+g(x)的圖象關(guān)于直線x=對稱
D.將函數(shù)f(x)的圖象向右平移個單位,再向上平移1個單位,得到函數(shù)g(x)的圖象

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年浙江省寧波市海曙區(qū)效實中學高三(上)期中數(shù)學試卷(理科)(解析版) 題型:選擇題

已知函數(shù)f(x)=sin(π-2x),g(x)=2cos2x,則下列結(jié)論正確的是( )
A.函數(shù)f(x)在區(qū)間[]上為增函數(shù)
B.函數(shù)y=f(x)+g(x)的最小正周期為2π
C.函數(shù)y=f(x)+g(x)的圖象關(guān)于直線x=對稱
D.將函數(shù)f(x)的圖象向右平移個單位,再向上平移1個單位,得到函數(shù)g(x)的圖象

查看答案和解析>>

同步練習冊答案