對于函數(shù),若存在x0∈R,使方程成立,則稱x0為的不動點(diǎn),已知函數(shù)(a≠0).
(1)當(dāng)時,求函數(shù)的不動點(diǎn);
(2)若對任意實(shí)數(shù)b,函數(shù)恒有兩個相異的不動點(diǎn),求a的取值范圍;
(1) 1為的不動點(diǎn)(2)
【解析】
試題分析:解:(1)由題得:,因為為不動點(diǎn),
因此有,即 2分
所以或,即3和-1為的不動點(diǎn)。 5分
(2)因為恒有兩個不動點(diǎn),
∴ ,
即 (※)恒有兩個不等實(shí)數(shù)根, 8分
由題設(shè)恒成立, 10分
即對于任意b∈R,有恒成立,
所以有 , 12分
∴ 13分
考點(diǎn):本題考查的重點(diǎn)是函數(shù)與方程的綜合運(yùn)用,主要是考查了函數(shù)的零點(diǎn)的變形運(yùn)用問題,屬于基礎(chǔ)題。考查同學(xué)們的等價轉(zhuǎn)換能力和分析問題解決問題的能力。
點(diǎn)評:解題的關(guān)鍵是對新定義的理解,建立方程,將不動點(diǎn)的問題,轉(zhuǎn)化為結(jié)合一元二次方程中必然有兩個不等的實(shí)數(shù)根來求解參數(shù)的取值范圍。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
對于函數(shù),若存在x0∈R,使f(x0)=x0成立,則稱x0為f(x)的不動點(diǎn).如果函數(shù)f(x)=有且僅有兩個不動點(diǎn)0和2.
(Ⅰ)試求b、c滿足的關(guān)系式;
(Ⅱ)若c=2時,各項不為零的數(shù)列{an}滿足4Sn?f()=1,求證:<<;
(Ⅲ)設(shè)bn=-,Tn為數(shù)列{bn}的前n項和,求證:T2009-1<ln2009<T2008.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
對于函數(shù),若存在x0∈R,使f(x0)=x0成立,則稱x0為f(x)的不動點(diǎn).如果函數(shù)f(x)=有且僅有兩個不動點(diǎn)0和2.
(Ⅰ)試求b、c滿足的關(guān)系式;
(Ⅱ)若c=2時,各項不為零的數(shù)列{an}滿足4Sn·f()=1,
求證:<<;
(Ⅲ)設(shè)bn=-,Tn為數(shù)列{bn}的前n項和,求證:T2009-1<ln2009<T2008.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年福建省高一上學(xué)期期中考試數(shù)學(xué)卷 題型:解答題
(本小題滿10分)注意:第(3)小題平行班學(xué)生不必做,特保班學(xué)生必須做。對于函數(shù),若存在x0∈R,使成立,則稱x0為的不動點(diǎn)。已知函數(shù)(a≠0)。
(1)當(dāng)時,求函數(shù)的不動點(diǎn);
(2)若對任意實(shí)數(shù)b,函數(shù)恒有兩個相異的不動點(diǎn),求a的取值范圍;
(3)(特保班做) 在(2)的條件下,若圖象上A、B兩點(diǎn)的橫坐標(biāo)是函數(shù)的不動點(diǎn),且A、B兩點(diǎn)關(guān)于點(diǎn)對稱,求的的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿10分)注意:第(3)小題平行班學(xué)生不必做,特保班學(xué)生必須做。
對于函數(shù),若存在x0∈R,使成立,則稱x0為的不動點(diǎn)。
已知函數(shù)(a≠0)。
(1)當(dāng)時,求函數(shù)的不動點(diǎn);
(2)若對任意實(shí)數(shù)b,函數(shù)恒有兩個相異的不動點(diǎn),求a的取值范圍;
(3)(特保班做) 在(2)的條件下,若圖象上A、B兩點(diǎn)的橫坐標(biāo)是函數(shù)的不動點(diǎn),且A、B兩點(diǎn)關(guān)于點(diǎn)對稱,求的的最小值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com