已知,.
(1)求的解析式;
(2)解關(guān)于的方程
(3)設(shè),時(shí),對任意總有成立,求的取值范圍.
(1)
(2)當(dāng)時(shí),方程無解
當(dāng)時(shí),解得
若,則
若,則
(3)
解析試題分析:
(1)利用換元法求解函數(shù)的解析式,設(shè),則,代入即得解析式
(2)依題意將方程中化簡得,然后分和分別求解,
(3)對任意總有成立,等價(jià)于當(dāng)時(shí),,然后分的取值來討論.
試題解析:解:(1)令即,則
即
(2)由化簡得:即
當(dāng)時(shí),方程無解
當(dāng)時(shí),解得
若,則
若,則
(3)對任意總有成立,等價(jià)于
當(dāng)時(shí),
令則
令
①當(dāng)時(shí),單調(diào)遞增,
此時(shí),
即(舍)
②當(dāng)時(shí),單調(diào)遞增
此時(shí),
即
③當(dāng)時(shí),
在上單調(diào)遞減,在上單調(diào)遞增
且
即
,綜上:
考點(diǎn):本題考查指數(shù)函數(shù)的性質(zhì)及閉區(qū)間上的最值問題,考查了恒成立問題轉(zhuǎn)化為求函數(shù)最值及分類討論.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
某產(chǎn)品生產(chǎn)廠家根據(jù)以往的生產(chǎn)銷售經(jīng)驗(yàn)得到下面有關(guān)生產(chǎn)銷售的統(tǒng)計(jì)規(guī)律:每生產(chǎn)產(chǎn)品(百臺),其總成本為(萬元),其中固定成本為2.8萬元,并且每生產(chǎn)1百臺的生產(chǎn)成本為1萬元(總成本=固定成本+生產(chǎn)成本)。銷售收入(萬元)滿足,假定該產(chǎn)品產(chǎn)銷平衡(即生產(chǎn)的產(chǎn)品都能賣掉),根據(jù)上述統(tǒng)計(jì)規(guī)律,請完成下列問題:
分別寫出和利潤函數(shù)的解析式(利潤=銷售收入—總成本);
工廠生產(chǎn)多少臺產(chǎn)品時(shí),可使盈利最多?并求出此時(shí)每臺產(chǎn)品的售價(jià)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),.
(Ⅰ)已知,若,求的值;
(Ⅱ)設(shè),當(dāng)時(shí),求在上的最小值;
(Ⅲ)求函數(shù)在區(qū)間上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知是偶函數(shù).
(1)求的值;
(2)證明:對任意實(shí)數(shù),函數(shù)的圖像與直線最多只有一個(gè)交點(diǎn);
(3)設(shè)若函數(shù)的圖像有且只有一個(gè)公共點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com