某種汽車的購車費用是10萬元,每年使用的保險費、養(yǎng)路費、汽油費約為萬元,年維修費用第一年是萬元,第二年是萬元,第三年是萬元,…,以后逐年遞增萬元汽車的購車費用、每年使用的保險費、養(yǎng)路費、汽油費、維修費用的和平均攤到每一年的費用叫做年平均費用.設這種汽車使用年的維修費用的和為,年平均費用為.
(1)求出函數(shù),的解析式;
(2)這種汽車使用多少年時,它的年平均費用最。孔钚≈凳嵌嗌?
(1),;(2)時,年平均費用最小,最小值為3萬元.

試題分析:根據(jù)題意可知,汽車使用年的維修費用的和為,而第一年的維修費用是萬元,以后逐年遞增萬元,每一年的維修費用形成以為首項,為公差的等差數(shù)列,根據(jù)等差數(shù)列的前項和即可求出的解析式;將購車費、每年使用的保險費、養(yǎng)路費、汽油費以及維修費用之和除以即可得到年平均費用,根據(jù)基本不等式即可求出平均費用的最小值.
試題解析:(1)根據(jù)題意可知,汽車使用年的維修費用的和為,而第一年的維修費用是萬元,以后逐年遞增萬元,每一年的維修費用形成以為首項,為公差的等差數(shù)列,根據(jù)等差數(shù)列的前項和公式可得:
因為購車費、每年使用的保險費、養(yǎng)路費、汽油費以及維修費用之和為,
所以年平均費用為
(2)因為
所以當且僅當時,年平均費用最小,最小值為3萬元.項和公式以的掌握,以及基本不等式的應用,同時考查了學生解決實際應用題的能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,一種醫(yī)用輸液瓶可以視為兩個圓柱的組合體.開始輸液時,滴管內勻速滴下球狀液體,其中球狀液體的半徑毫米,滴管內液體忽略不計.

(1)如果瓶內的藥液恰好分鐘滴完,問每分鐘應滴下多少滴?
(2)在條件(1)下,設輸液開始后(單位:分鐘),瓶內液面與進氣管的距離為(單位:厘米),已知當時,.試將表示為的函數(shù).(注:

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

一種放射性元素,最初的質量為,按每年衰減.
(1)求年后,這種放射性元素的質量的函數(shù)關系式;
(2)求這種放射性元素的半衰期(質量變?yōu)樵瓉淼?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030322195339.png" style="vertical-align:middle;" />時所經(jīng)歷的時間).(

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

用一塊鋼錠燒鑄一個厚度均勻,且表面積為2m2的正四棱錐形有蓋容器(如下圖)。設容器高為m,蓋子邊長為m,

(1)求關于的解析式;
(2)設容器的容積為V m3,則當h為何值時,V最大? 并求出V的最大值(求解本題時,不計容器厚度).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

方程的解所在的區(qū)間為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

對于定義域為的函數(shù),如果同時滿足以下三個條件:
①對任意的,總有;②;③若都有 成立;
則稱函數(shù)函數(shù).
下面有三個命題:
(1)若函數(shù)函數(shù),則;(2)函數(shù)函數(shù);
(3)若函數(shù)函數(shù),假定存在,使得,且, 則;        其中真命題是________.(填上所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

下列四類函數(shù)中,具有性質“對任意的,,函數(shù)滿足
的是( )
A.冪函數(shù)B.對數(shù)函數(shù)C.指數(shù)函數(shù)D.余弦函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在直角坐標系中, 如果兩點A(a, b), B(-a, -b)在函數(shù)的圖象上, 那么稱[A, B]為函數(shù)f(x)的一組關于原點的中心對稱點 ([A , B]與[B, A]看作一組). 函數(shù)
關于原點的中心對稱點的組數(shù)為_____________

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù),用二分法求方程內近似解的過程中,取區(qū)間中點,那么下一個有根區(qū)間為 (     )
A.(1,2)B.(2,3)
C.(1,2)或(2,3)都可以D.不能確定

查看答案和解析>>

同步練習冊答案