精英家教網 > 高中數學 > 題目詳情

【題目】某學習小組在研究性學習中,對晝夜溫差大小與綠豆種子一天內出芽數之間的關系進行研究.該小組在4月份記錄了1日至6日每天晝夜最高、最低溫度(如圖1),以及浸泡的100顆綠豆種子當天內的出芽數(如圖2).

根據上述數據作出散點圖,可知綠豆種子出芽數 (顆)和溫差 ()具有線性相關關系.

(1)求綠豆種子出芽數 (顆)關于溫差 ()的回歸方程;

(2)假如4月1日至7日的日溫差的平均值為11,估計4月7日浸泡的10000顆綠豆種子一天內的出芽數.

附:,

【答案】(1) (2) 5125顆.

【解析】

1)根據題中信息,作出溫差與出芽數(顆)之間數據表,計算出,并將表格中的數據代入最小二乘法公式計算出,即可得出回歸直線方程;

2)將日至日的日平均溫差代入回歸直線方程,可得出顆綠豆種子的發(fā)芽數,于是可計算出顆綠豆種子在一天內的發(fā)芽數。

1)依照最高()溫度折線圖和出芽數條形圖可得如下數據表:

日期

1

2

3

4

5

6

溫差

7

8

12

9

13

11

出芽數

23

26

37

31

40

35

,

-3

-2

2

-1

3

1

-9

-6

5

-1

8

3

,

所以,

所以,

所以綠豆種子出芽數 (顆)關于溫差 ()的回歸方程為

2)因為41日至7日的日溫差的平均值為

所以47日的溫差,

所以,

所以47日浸泡的10000顆綠豆種子一天內的出芽數約為5125.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某廠生產某種產品的年固定成本為250萬元,每生產千件,需另投入成本為,當年產量不足80千件時,(萬元);當年產量不小于80千件時,(萬元).每件商品售價為0.05萬元,通過市場分析,該廠生產的商品能全部銷售完.

(1)寫出年利潤(萬元)關于年產量(千件)的函數解析式;

(2)年產量為多少千件時,該廠在這一產品的生產中所獲利潤最大,最大利潤是多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】,命題p:函數內單調遞增;q:函數僅在處有極值.

1)若命題q是真命題,求a的取值范圍;

2)若命題是真命題,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在直三棱柱中,平面側面,且.

1)求證:;

2)若,求銳二面角的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某高校大一新生中,來自東部地區(qū)的學生有2400人、中部地區(qū)學生有1600人、西部地區(qū)學生有1000人.從中選取100人作樣本調研飲食習慣,為保證調研結果相對準確,下列判斷正確的有( )

①用分層抽樣的方法分別抽取東部地區(qū)學生48人、中部地區(qū)學生32人、西部地區(qū)學生20人;

②用簡單隨機抽樣的方法從新生中選出100人;

③西部地區(qū)學生小劉被選中的概率為;

④中部地區(qū)學生小張被選中的概率為

A. ①④ B. ①③ C. ②④ D. ②③

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面上給定相異兩點A,B,設P點在同一平面上且滿足,當時,P點的軌跡是一個圓,這個軌跡最先由古希臘數學家阿波羅尼斯發(fā)現,故我們稱這個圓為阿波羅尼斯圓,現有雙曲線,),AB為雙曲線的左、右頂點,C,D為雙曲線的虛軸端點,動點P滿足,面積的最大值為,面積的最小值為4,則雙曲線的離心率為______.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓C (a>b>0)的一個頂點為A(2,0),離心率為.直線yk(x-1)與橢圓C交于不同的兩點M,N.

(1)求橢圓C的方程;

(2)當△AMN的面積為時,求k的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某市環(huán)保部門對該市市民進行了一次動物保護知識的網絡問卷調查,每位市民僅有一次參加機會,通過隨機抽樣,得到參'與問卷調查的100人的得分(滿分:100分)數據,統計結果如表所示:

組別

2

3

5

15

18

12

0

5

10

15

5

10

若規(guī)定問卷得分不低于70分的市民稱為“動物保護關注者”,則山圖中表格可得列聯表如下:

非“動物保護關注者”

是“動物保護關注者”

合計

10

45

55

15

30

45

合計

25

75

100

1)請判斷能否在犯錯誤的概率不超過005的前提下認為“動物保護關注者”與性別有關?

2)若問卷得分不低于80分的人稱為“動物保護達人”.現在從本次調查的“動物保護達人”中利用分層抽樣的方法隨機抽取6名市民參與環(huán)保知識問答,再從這6名市民中抽取2人參與座談會,求抽取的2名市民中,既有男“動物保護達人”又有女動物保護達人”的概率.

附表及公式:,其中.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)討論的單調性.

(2)試問是否存在,使得恒成立?若存在,求的取值范圍;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案