(本小題12分)如圖:四棱錐P—ABCD中,底面ABCD

 

 

是矩形,PA⊥底面ABCD,PA=AB=1,AD=,點(diǎn)F是PB的中點(diǎn),點(diǎn)E在邊BC上移動(dòng).

(1)證明:無(wú)論點(diǎn)E在BC邊的何處,都有PE⊥AF;

(2)當(dāng)BE等于何值時(shí),PA與平面PDE所成角的大小為45°. 

 

【答案】

 

【解析】(1)證明詳見(jiàn)解析;(2)

試題分析:(1)以A為原點(diǎn),AD,AB,AP分別為x軸,y軸,z軸建立空間直角坐標(biāo)系,求證 =0即可;(2)求出表示平面PDE的一個(gè)法向量的坐標(biāo),由向量的夾角公式和已知條件可得到一個(gè)方程,解之即可.

試題解析:解:(1) 建立如圖所示空間直角坐標(biāo)系,

 

則P(0,0,1),B(0,1,0),

  設(shè)

∴AF⊥PE 

(2)設(shè)平面PDE的法向量為,由 得,而,

因?yàn)镻A與平面PDE所成角的大小為45°,

所以sin45°=  ,即 ,得BE=x= ,

或BE=x=(舍去).

考點(diǎn):1.向量數(shù)量積的性質(zhì);2.向量夾角公式的應(yīng)用.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年湖南省常德市高三質(zhì)量檢測(cè)考試數(shù)學(xué)理卷 題型:解答題

     (本小題12分)

如圖3,已知在側(cè)棱垂直于底面

的三棱柱中,AC=BC, AC⊥BC,點(diǎn)D是A1B1中點(diǎn).

(1)求證:平面AC1D⊥平面A1ABB1;

(2)若AC1與平面A1ABB1所成角的正弦值

,求二面角D- AC1-A1的余弦值.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年河北省高三高考?jí)狠S模擬考試文數(shù) 題型:解答題

(本小題12分)如圖,四棱錐中,

側(cè)面是邊長(zhǎng)為2的正三角形,且與底面垂直,底面的菱形,的中點(diǎn).

(1)與底面所成角的大;

(2)求證:平面

(3)求二面角的余弦值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆海南省高一上學(xué)期教學(xué)質(zhì)量監(jiān)測(cè)三數(shù)學(xué) 題型:解答題

(本小題12分)如圖,四棱錐中,底面是正方形,, 底面,    分別在上,且

(1)求證:平面∥平面

(2)求直線與平面面所成角的正弦值.

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011年海南省高二下學(xué)期質(zhì)量檢測(cè)數(shù)學(xué)文卷(一) 題型:解答題

(本小題12分)

如圖:⊙O為△ABC的外接圓,AB=AC,過(guò)點(diǎn)A的直線交⊙O于D,交BC延長(zhǎng)線于F,DE是BD的延長(zhǎng)線,連接CD。

①  求證:∠EDF=∠CDF;   

②求證:AB2=AF·AD。

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010集寧一中學(xué)高三年級(jí)理科數(shù)學(xué)第一學(xué)期期末考試試題 題型:解答題

(本小題12分)如圖,四面體ABCD中,O、E分別是BD、BC的中點(diǎn),

    (I)求證:平面BCD;

    (II)求異面直線AB與CD所成角的大小;

    (III)求點(diǎn)E到平面ACD的距離。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案