【題目】已知兩個平面垂直,下列命題: ①一個平面內(nèi)的已知直線必垂直于另一個平面內(nèi)的任意一條直線.
②一個平面內(nèi)的已知直線必垂直于另一個平面內(nèi)的無數(shù)條直線.
③一個平面內(nèi)的任一條直線必垂直于另一個平面.
④一個平面內(nèi)垂直于交線的直線與另一個平面垂直.
其中正確命題的個數(shù)是(
A.3
B.2
C.1
D.0

【答案】B
【解析】解:考察正方體中互相垂直的兩個平面:面A1ABB1和面ABCD:

對于①:一個平面內(nèi)的已知直線不一定垂直于另一個平面的任意一條直線.如圖中A1B與AB不垂直;

對于②:一個平面內(nèi)的已知直線必垂直于另一個平面的無數(shù)條直線.這一定是正確的.

如圖中,已知直線A1B,在平面ABCD中,所有與BC平行直線都與它垂直;

對于③:一個平面內(nèi)的任一條直線不一定垂直于另一個平面;如圖中:A1B;

對于④:過一個平面內(nèi)任意一點作交線的垂線,利用面面垂直的性質(zhì),可知垂線必垂直于另一個平面.

故選:B.

【考點精析】根據(jù)題目的已知條件,利用空間中直線與平面之間的位置關(guān)系的相關(guān)知識可以得到問題的答案,需要掌握直線在平面內(nèi)—有無數(shù)個公共點;直線與平面相交—有且只有一個公共點;直線在平面平行—沒有公共點.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)定點M(3, )與拋物線y2=2x上的點P的距離為d1 , P到拋物線準線l的距離為d2 , 則d1+d2取最小值時,P點的坐標為(
A.(0,0)
B.(1,
C.(2,2)
D.( ,-

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】過點P(3,2)且在兩坐標軸上的截距相等的直線方程是(
A.x﹣y﹣1=0
B.x+y﹣5=0或2x﹣3y=0
C.x+y﹣5=0
D.x﹣y﹣1=0或2x﹣3y=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x+ ﹣1(x≠0),k∈R.
(1)當k=3時,試判斷f(x)在(﹣∞,0)上的單調(diào)性,并用定義證明;
(2)若對任意x∈R,不等式f(2x)>0恒成立,求實數(shù)k的取值范圍;
(3)當k∈R時,試討論f(x)的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直角梯形ABCD中,AB∥CD,AB⊥BC,AB=2,CD=1,BC=a(a>0),P為線段AD(含端點)上一個動點,設(shè) , ,則得到函數(shù)y=f(x).
(Ⅰ)求f(1)的值;
(Ⅱ)對于任意a∈(0,+∞),求函數(shù)f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,AD∥BC,PB⊥AC,AD⊥CD,且AD=CD=2 ,PA=2,點M在線段PD上. (Ⅰ)求證:AB⊥平面PAC;
(Ⅱ)若二面角M﹣AC﹣D的大小為45°,試確定點M的位置.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校為了解高一期末數(shù)學考試的情況,從高一的所有學生數(shù)學試卷中隨機抽取n份試卷進行成績分析,得到數(shù)學成績頻率分布直方圖(如圖所示),其中成績在[50,60)的學生人數(shù)為6.
(Ⅰ)估計所抽取的數(shù)學成績的眾數(shù);
(Ⅱ)用分層抽樣的方法在成績?yōu)閇80,90)和[90,100]這兩組中共抽取5個學生,并從這5個學生中任取2人進行點評,求分數(shù)在[90,100]恰有1人的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某投資公司計劃投資A,B兩種金融產(chǎn)品,根據(jù)市場調(diào)查與預(yù)測,A產(chǎn)品的利潤y1與投資金額x的函數(shù)關(guān)系為y1=18﹣ ,B產(chǎn)品的利潤y2與投資金額x的函數(shù)關(guān)系為y2= (注:利潤與投資金額單位:萬元).
(1)該公司已有100萬元資金,并全部投入A,B兩種產(chǎn)品中,其中x萬元資金投入A產(chǎn)品,試把A,B兩種產(chǎn)品利潤總和表示為x的函數(shù),并寫出定義域;
(2)在(1)的條件下,試問:怎樣分配這100萬元資金,才能使公司獲得最大利潤?其最大利潤為多少萬元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè) 1=a1≤a2≤…≤a7 , 其中a1 , a3 , a5 , a7 成公比為q的等比數(shù)列,a2 , a4 , a6成公差為1的等差數(shù)列,則q的最小值是

查看答案和解析>>

同步練習冊答案