過橢圓
上異于某直徑兩端點(diǎn)的任意一點(diǎn),與這條直徑的兩個(gè)端點(diǎn)連線,則兩條連線的斜率之積為定值
分析:由圓的性質(zhì)類比猜想有心曲線的性質(zhì),一般的思路是:點(diǎn)到點(diǎn),線到線,直徑到直徑等類比后的結(jié)論應(yīng)該為關(guān)于有心曲線的一個(gè)結(jié)論.
解答:定理:如果圓x
2+y
2=r
2(r>0)上異于一條直徑兩個(gè)端點(diǎn)的任意一點(diǎn)與這條直徑兩個(gè)端點(diǎn)連線的斜率存在,則這兩條直線的斜率乘積為定值-1.
運(yùn)用類比推理,寫出該定理在有心曲線
中的推廣:
過橢圓
上異于某直徑兩端點(diǎn)的任意一點(diǎn),與這條直徑的兩個(gè)端點(diǎn)連線,則兩條連線的斜率之積為定值
.
故答案為:過橢圓
上異于某直徑兩端點(diǎn)的任意一點(diǎn),與這條直徑的兩個(gè)端點(diǎn)連線,則兩條連線的斜率之積為定值
.
點(diǎn)評:本題考查的知識點(diǎn)是類比推理,類比推理的一般步驟是:(1)找出兩類事物之間的相似性或一致性;(2)用一類事物的性質(zhì)去推測另一類事物的性質(zhì),得出一個(gè)明確的命題(猜想).