【題目】如圖,在直三棱柱ABC﹣A1B1C1中,點(diǎn)D、E、F分別為線段A1C1、AB、A1A的中點(diǎn),A1A=AC=BC,∠ACB=90°.求證:
(1)DE∥平面BCC1B1;
(2)EF⊥平面B1CE.
【答案】(1)證明見解析;(2)證明見解析.
【解析】
(1)取B1C1的中點(diǎn)M,連接D1M,BM,證明四邊形DMBE是平行四邊形,得到證明.
(2)根據(jù)勾股定理得EF⊥CE,根據(jù)三角函數(shù)關(guān)系得到EF⊥B1E,得到證明.
(1)如圖所示:取B1C1的中點(diǎn)M,連接D1M,BM,由題意得DM∥A1B1,
∴DM∥AB,且DM是△A1B1C1的中位線,DMAB=BE,
所以四邊形DMBE是平行四邊形,
∴DE∥BM,又DE面BCC1B1,BM面BCC1B1
∴DE∥平面BCC1B1.
(2)由題意設(shè)AC=2,則AB=2,AE,AF=1,
在△AEF中,EF,
而CEAB,Rt△ACF中,CF,
∴△CEF中CE2+EF2=CF2,由勾股定理得,EF⊥CE,
tan∠FEC,tan∠BEB1,所以tan∠FECtan∠BEB1=1,
所以EF⊥B1E,又CE∩EB1=E,CE平面B1CE,B1E平面B1CE,
∴EF⊥平面B1CE.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校學(xué)生會(huì)為了解高二年級(jí)600名學(xué)生課余時(shí)間參加中華傳統(tǒng)文化活動(dòng)的情況(每名學(xué)生最多參加7場(chǎng)).隨機(jī)抽取50名學(xué)生進(jìn)行調(diào)查,將數(shù)據(jù)分組整理后,列表如下:
則以下四個(gè)結(jié)論中正確的是( )
A.表中的數(shù)值為10
B.估計(jì)該年級(jí)參加中華傳統(tǒng)文化活動(dòng)場(chǎng)數(shù)不高于2場(chǎng)的學(xué)生約為108人
C.估計(jì)該年級(jí)參加中華傳統(tǒng)文化活動(dòng)場(chǎng)數(shù)不低于4場(chǎng)的學(xué)生約為216人
D.若采用系統(tǒng)抽樣方法進(jìn)行調(diào)查,從該校高二600名學(xué)生中抽取容量為30的樣本,則分段間隔為15
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)圓C1:x2+y2﹣10x+4y+25=0與圓C2:x2+y2﹣14x+2y+25=0,點(diǎn)A,B分別是C1,C2上的動(dòng)點(diǎn),M為直線y=x上的動(dòng)點(diǎn),則|MA|+|MB|的最小值為( 。
A.3B.3C.5D.5
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在幾何體中,四邊形為菱形,對(duì)角線與的交點(diǎn)為,四邊形為梯形,,.
(1)若,求證:平面;
(2)求證:平面平面;
(3)若,求與平面所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】上饒市在某次高三適應(yīng)性考試中對(duì)數(shù)學(xué)成績(jī)數(shù)據(jù)統(tǒng)計(jì)顯示,全市10000名學(xué)生的成績(jī)近似服從正態(tài)分布,現(xiàn)某校隨機(jī)抽取了50名學(xué)生的數(shù)學(xué)成績(jī)分析,結(jié)果這50名學(xué)生的成績(jī)?nèi)拷橛?/span>85分到145分之間,現(xiàn)將結(jié)果按如下方式分為6組,第一組,第二組,…,第六組,得到如圖所示的頻率分布直方圖:
(1)試由樣本頻率分布直方圖估計(jì)該校數(shù)學(xué)成績(jī)的平均分?jǐn)?shù);
(2)若從這50名學(xué)生中成績(jī)?cè)?/span>125分(含125分)以上的同學(xué)中任意抽取3人,該3人在全市前13名的人數(shù)記為,求的概率.
附:若,則,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線上一點(diǎn)到其焦點(diǎn)下的距離為10.
(1)求拋物線C的方程;
(2)設(shè)過焦點(diǎn)F的的直線與拋物線C交于兩點(diǎn),且拋物線在兩點(diǎn)處的切線分別交x軸于兩點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義區(qū)間,,,的長(zhǎng)度均為,其中.
(1)已知函數(shù)的定義域?yàn)?/span>,值域?yàn)?/span>,寫出區(qū)間長(zhǎng)度的最大值與最小值.
(2)已知函數(shù)的定義域?yàn)閷?shí)數(shù)集,滿足 (是的非空真子集).集合, ,求的值域所在區(qū)間長(zhǎng)度的總和.
(3)定義函數(shù),判斷函數(shù)在區(qū)間上是否有零點(diǎn),并求不等式解集區(qū)間的長(zhǎng)度總和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(Ⅰ)討論的極值;
(Ⅱ)若曲線和曲線在點(diǎn)處有相同的切線,且當(dāng)時(shí),,求的取值范圍 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了了解高中生的藝術(shù)素養(yǎng),從學(xué)校隨機(jī)選取男,女同學(xué)各50人進(jìn)行研究,對(duì)這100名學(xué)生在音樂、美術(shù)、戲劇、舞蹈等多個(gè)藝術(shù)項(xiàng)目進(jìn)行多方位的素質(zhì)測(cè)評(píng),并把調(diào)查結(jié)果轉(zhuǎn)化為個(gè)人的素養(yǎng)指標(biāo)和,制成下圖,其中“*”表示男同學(xué),“+”表示女同學(xué).
若,則認(rèn)定該同學(xué)為“初級(jí)水平”,若,則認(rèn)定該同學(xué)為“中級(jí)水平”,若,則認(rèn)定該同學(xué)為“高級(jí)水平”;若,則認(rèn)定該同學(xué)為“具備一定藝術(shù)發(fā)展?jié)撡|(zhì)”,否則為“不具備明顯藝術(shù)發(fā)展?jié)撡|(zhì)”.
(I)從50名女同學(xué)的中隨機(jī)選出一名,求該同學(xué)為“初級(jí)水平”的概率;
(Ⅱ)從男同學(xué)所有“不具備明顯藝術(shù)發(fā)展?jié)撡|(zhì)的中級(jí)或高級(jí)水平”中任選2名,求選出的2名均為“高級(jí)水平”的概率;
(Ⅲ)試比較這100名同學(xué)中,男、女生指標(biāo)的方差的大。ㄖ恍鑼懗鼋Y(jié)論).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com