【題目】沭陽縣某水果店銷售某種水果,經(jīng)市場調(diào)查,該水果每日的銷售量(單位:千克)與銷售價格近似滿足關(guān)系式,其中為常數(shù),已知銷售價格定為千克時,每日可銷售出該水果千克.

(1)求實數(shù)的值;

(2)若該水果的成本價格為千克,要使得該水果店每日銷售該水果獲得最大利潤,請你確定銷售價格的值,并求出最大利潤.

【答案】(1);(2)當(dāng)銷售價格定為元/千克時,日獲得利潤最大為42元.

【解析】試題分析:(1)將 帶入,解方程即可得結(jié)果;(2)求得,利用二次函數(shù)配方法求解.

試題解析:(1)由題意知當(dāng)時,

所以得

解得

(2)由知銷售量為 ,

設(shè)利潤為,則

所以當(dāng)時,利潤最大,最大值為

答:當(dāng)銷售價格定為元/千克時,日獲得利潤最大為42元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】本小題滿分12甲、乙兩袋中各裝有大小相同的小球個,其中甲袋中紅色、黑色、白色小球的個數(shù)分別為、、,乙袋中紅色、黑色、白色小球的個數(shù)均為,某人用左右手分別從甲、乙兩袋中取球

1若左右手各取一球,求兩只手中所取的球顏色不同的概率;

2若左右手依次各取兩球,稱同一手中兩球顏色相同的取法為成功取法,記兩次取球的成功取法次數(shù)為隨機變量,求的分布列和數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過點A(0,1)且斜率為k的直線l與圓C:(x-2)2+(y-3)2=1交于M,N兩點.

(1)求k的取值范圍;

(2)若=12,其中O為坐標(biāo)原點,求|MN|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某次水下科研考察活動中,需要潛水員潛入水深為60米的水底進行作業(yè),根據(jù)已往經(jīng)驗,潛水員下潛的平均速度為/單位時間),每單位時間的用氧量為升),在水底作業(yè)10個單位時間,每單位時間用氧量為升),返回水面的平均速度為/單位時間),每單位時間用氧量為升),記該潛水員在此次考察活動中的總用氧量為升).

(1關(guān)函數(shù)關(guān)系式;

(2,求當(dāng)下潛速度什么時,總用氧量最少.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若正項數(shù)列{}滿足:,則稱此數(shù)列為“比差等數(shù)列”.

(1)請寫出一個“比差等數(shù)列”的前3項的值;

(2)設(shè)數(shù)列{}是一個“比差等數(shù)列”

(i)求證:

(ii)記數(shù)列{}的前項和為,求證:對于任意,都有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),函數(shù)

(1)若求曲線處的切線方程;

(2)若無零點,求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)有兩個極值點, ,且,記點, .

(Ⅰ)求直線的方程;

(Ⅱ)證明:線段與曲線有且只有一個異于、的公共點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)求下列函數(shù)的解析式:

(1)已知,求;

(2) 已知函數(shù)是一次函數(shù),且滿足關(guān)系式,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修44:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,直線經(jīng)過點,其傾斜角為,在以原點為極點, 軸非負半軸為極軸的極坐標(biāo)系中(取相同的長度單位),曲線C的極坐標(biāo)方程為
)若直線與曲線C有公共點,求的取值范圍;

)設(shè)為曲線C上任意一點,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案