以下四個(gè)命題
①定義在R上的函數(shù)f(x)滿足f(2)<f(3),則函數(shù)f(x)在R上不是單調(diào)減函數(shù).
②若A={1,4},B={1,-1,2,-2},f:x→x7的平方根.則f是A到B的映射.
③將函數(shù)f(x)=2-x的圖象向右平移兩個(gè)單位向下平移一個(gè)單位后,得到的圖象對(duì)應(yīng)的函數(shù)為g(x)=2-x-2-1
④關(guān)于x13的方程|2x-1|=a(a為常數(shù)),當(dāng)a>0時(shí)方程必有兩個(gè)不同的實(shí)數(shù)解.
其中正確的命題序號(hào)為________(以序號(hào)作答)
解:定義在R上的函數(shù)f(x)滿足f(2)<f(3),則函數(shù)f(x)在R上一定不是單調(diào)減函數(shù),故①成立;
若A={1,4},B={1,-1,2,-2},f:x→x的平方根.則f是A到B的映射,故②成立;
將函數(shù)f(x)=2-x的圖象向右平移兩個(gè)單位向下平移一個(gè)單位后,得到的圖象對(duì)應(yīng)的函數(shù)為g(x)=2-x+2-1,故③不成立;
關(guān)于x的方程|2x-1|=a(a為常數(shù)),當(dāng)0<a<1時(shí)方程必有兩個(gè)不同的實(shí)數(shù)解,故④不成立.
故正確答案為:①②.
分析:定義在R上的函數(shù)f(x)滿足f(2)<f(3),則函數(shù)f(x)在R上一定不是單調(diào)減函數(shù);若A={1,4},B={1,-1,2,-2},f:x→x的平方根.則f是A到B的映射;將函數(shù)f(x)=2-x的圖象向右平移兩個(gè)單位向下平移一個(gè)單位后,得到的圖象對(duì)應(yīng)的函數(shù)為g(x)=2-x+2-1;關(guān)于x的方程|2x-1|=a(a為常數(shù)),當(dāng)0<a<1時(shí)方程必有兩個(gè)不同的實(shí)數(shù)解.
點(diǎn)評(píng):本題考查函數(shù)的性質(zhì)和應(yīng)用,解題時(shí)要認(rèn)真審題,注意抽象函數(shù)、指數(shù)函數(shù)的性質(zhì)的靈活運(yùn)用.
科目:高中數(shù)學(xué)
來(lái)源:2007-2008學(xué)年江蘇省無(wú)錫一中高一(上)期中數(shù)學(xué)試卷(藝術(shù)班)(解析版)
題型:填空題
以下四個(gè)命題
①定義在R上的函數(shù)f(x)滿足f(2)<f(3),則函數(shù)f(x)在R上不是單調(diào)減函數(shù).
②若A={1,4},B={1,-1,2,-2},f:x→x7的平方根.則f是A到B的映射.
③將函數(shù)f(x)=2-x的圖象向右平移兩個(gè)單位向下平移一個(gè)單位后,得到的圖象對(duì)應(yīng)的函數(shù)為g(x)=2-x-2-1
④關(guān)于x13的方程|2x-1|=a(a為常數(shù)),當(dāng)a>0時(shí)方程必有兩個(gè)不同的實(shí)數(shù)解.
其中正確的命題序號(hào)為 (以序號(hào)作答)
查看答案和解析>>