設(shè)P是等軸雙曲線x2-y2=a2(a>0)右支上一點,F(xiàn)1,F(xiàn)2是左、右焦點,若
PF2
F1F2
=0,|
PF1
|=6,求雙曲線的方程.
考點:雙曲線的標(biāo)準(zhǔn)方程
專題:
分析:根據(jù)題意可得∴|PF1|-|PF2|=2a,|F1F2|=2
2
a.,直角三角形可得:|PF1|2=|PF2|2+8a2,求出a即可得出方程.
解答: 解:∵P是等軸雙曲線x2-y2=a2(a>0)右支上一點,F(xiàn)1,F(xiàn)2是其左,右焦點,
∴|PF1|-|PF2|=2a,|F1F2|=2
2
a
,
PF2
F1F2
=0,|
PF1
|=6,
∴∠PF2F1=90°,
根據(jù)直角三角形中的邊的關(guān)系得出:|PF1|2=|PF2|2+8a2,PF1=6,
∴36=(6-2a)2+8a2,a>0
∴a=2,
∴雙曲線方程為:x2-y2=4,
點評:本題主要考查雙曲線標(biāo)準(zhǔn)方程,簡單幾何性質(zhì),直線與雙曲線的位置關(guān)系,雙曲線的簡單性質(zhì)等基礎(chǔ)知識.考查運(yùn)算求解能力,推理論證能力;考查化歸與轉(zhuǎn)化思想.綜合性強(qiáng),是高考的重點,易錯點是雙曲線的知識體系不牢固
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C以直線x±2y=0為漸近線,且經(jīng)過點A(2,-2),則雙曲線C的方程是( 。
A、
x2
3
-
y2
12
=1
B、
x2
12
-
y2
3
=1
C、
y2
12
-
x2
3
=1
D、
y2
3
-
x2
12
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求滿足下列條件的直線的方程:
(1)經(jīng)過點A(3,2)且與直線4x+y-2=0平行;
(2)經(jīng)過點C(2,-3),且平行于過點M(1,2)和N(-1,-5)的直線;
(3)經(jīng)過點B(3,0),且與直線2x+y-5=0垂直.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=xlnx,g(x)=-x2+ax-3.
(1)求函數(shù)f(x)在[
1
3
,e]上的值域;
(2)對?x∈(0,+∞),2f(x)≥g(x)恒成立,求實數(shù)a的取值范圍;
(3)證明:對一切x∈(0,+∞),都有l(wèi)nx>
1
ex
-
2
ex
成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知P點在圓O內(nèi),弦AB的中點是P,圓內(nèi)接正三角形的邊長為a,則|AB|≥a的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線ax+by+a+b=0與圓x2+y2=r2恒有公共點 則r的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點F是拋物線y2=4x的焦點,過點(2,1)的直線與拋物線相交于A,B兩點
(1)若點F在直線AB上,求|AB|的值;
(2)若點P是線段AB的中點,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinα,cosα是關(guān)于x的方程x2-ax+a=0的兩個根,則
1+cos2α-sin2α
1-sin2α-cos2α
+
1-sin2α-cos2α
1+cos2α-sin2α
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若二次函數(shù)f(x)=x2+(a-1)x+a有兩個正零點,則a的取值范圍為
 

查看答案和解析>>

同步練習(xí)冊答案