精英家教網 > 高中數學 > 題目詳情

矩形的中心在坐標原點,邊軸平行,=8,=6.分別是矩形四條邊的中點,是線段的四等分點,是線段的四等分點.設直線,,的交點依次為.

(1)以為長軸,以為短軸的橢圓Q的方程;
(2)根據條件可判定點都在(1)中的橢圓Q上,請以點L為例,給出證明(即證明點L在橢圓Q上).
(3)設線段等分點從左向右依次為,線段等分點從上向下依次為,那么直線與哪條直線的交點一定在橢圓Q上?(寫出結果即可,此問不要求證明)

(1);(2)詳見解析;(3)

解析試題分析:根據長軸長,短軸長,可求出橢圓的方程;根據點的坐標可寫出直線的方程,同理也可寫出直線的方程,再求出它們的交點的坐標,驗證在橢圓上即可得證;類比(2)的結論,即可得到直線與直線的交點一定在橢圓Q上.
試題解析:
根據題意可知,橢圓的焦點在軸上,可設其標準方程為,
因為長軸長,短軸長,所以
所以所求的橢圓的標準方程為:
由題意知,
可得直線的方程為,直線的方程為,
聯(lián)立可解得其交點,將的坐標代入橢圓方程成立,即點在橢圓上得證.
另法:設直線交點,
三點共線得:                 ①
三點共線得:            ②
①②相乘,整理可得,即
所以L在橢圓上.
(3)類比(2)的結論,即可得到直線與直線的交點一定在橢圓Q上.
考點:本題考查了直線的方程,橢圓的方程的求解方法,以及直線與圓錐曲線的位置關系.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

如圖,已知橢圓的長軸為AB,過點B的直線
軸垂直,橢圓的離心率,F為橢圓的左焦點,且

(1)求此橢圓的標準方程;
(2)設P是此橢圓上異于A,B的任意一點, 軸,H為垂足,延長HP到點Q,使得HP=PQ,連接AQ并延長交直線于點,的中點,判定直線與以為直徑的圓O位置關系。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知頂點在原點,焦點在軸上的拋物線過點.
(1)求拋物線的標準方程;
(2)若拋物線與直線交于兩點,求證:.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,斜率為的直線過拋物線的焦點,與拋物線交于兩點A、B, M為拋物線弧AB上的動點.

(Ⅰ)若,求拋物線的方程;
(Ⅱ)求△ABM面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知圓,若橢圓的右頂點為圓的圓心,離心率為.
(1)求橢圓的方程;
(2)若存在直線,使得直線與橢圓分別交于兩點,與圓分別交于兩點,點在線段上,且,求圓的半徑的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知定點F(2,0)和定直線,動圓P過定點F與定直線相切,記動圓圓心P的軌跡為曲線C
(1)求曲線C的方程.
(2)若以M(2,3)為圓心的圓與拋物線交于A、B不同兩點,且線段AB是此圓的直徑時,求直線AB的方程

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知拋物線的頂點為原點,其焦點到直線的距離為.設為直線上的點,過點作拋物線的兩條切線,其中為切點.
(Ⅰ)求拋物線的方程;
(Ⅱ)設點為直線上的點,求直線的方程;
(Ⅲ) 當點在直線上移動時,求的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

在周長為定值的DDEC中,已知,動點C的運動軌跡為曲線G,且當動點C運動時,有最小值
(1)以DE所在直線為x軸,線段DE的中垂線為y軸建立直角坐標系,求曲線G的方程;
(2)直線l分別切橢圓G與圓(其中)于A、B兩點,求|AB|的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知△ABC的兩個頂點A,B的坐標分別是(-5,0),(5,0),且AC,BC所在直
線的斜率之積等于m(m≠0),求頂點C的軌跡.

查看答案和解析>>

同步練習冊答案