【題目】如圖,在極坐標(biāo)系中,,,,,,弧,所在圓的圓心分別是,,曲線是弧,曲線是線段,曲線是線段,曲線是弧.
(1)分別寫出,,,的極坐標(biāo)方程;
(2)曲線由,,,構(gòu)成,若點(diǎn),(),在上,則當(dāng)時,求點(diǎn)的極坐標(biāo).
【答案】(1)線的極坐標(biāo)方程為:,的極坐標(biāo)方程為:,,的極坐標(biāo)方程分別為:,;(2),
.
【解析】
(1)在極坐標(biāo)系下,在曲線上任取一點(diǎn),直角三角形中,
,曲線的極坐標(biāo)方程為:,同理可得其他.
(2)當(dāng)時,,,當(dāng),,
計(jì)算得到答案.
(1)解法一:在極坐標(biāo)系下,在曲線上任取一點(diǎn),連接、,
則在直角三角形中,,,,得:.
所以曲線的極坐標(biāo)方程為:
又在曲線上任取一點(diǎn),則在中,,,,
,,由正弦定理得:,
即:,化簡得的極坐標(biāo)方程為:
同理可得曲線,的極坐標(biāo)方程分別為:,
解法二:(先寫出直角坐標(biāo)方程,再化成極坐標(biāo)方程.)
由題意可知,,,的直角坐標(biāo)方程為:
,,
,,
所以,,,的極坐標(biāo)方程為:,
,,
(2)當(dāng)時,,,
當(dāng)時,,,
所以點(diǎn)的極坐標(biāo)為,
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(為自然對數(shù)的底數(shù)),是的導(dǎo)函數(shù).
(Ⅰ)當(dāng)時,求證;
(Ⅱ)是否存在正整數(shù),使得對一切恒成立?若存在,求出的最大值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】不期而至的新冠肺炎疫情,牽動了億萬國人的心,全國各地紛紛捐贈物資馳援武漢.有一批捐贈物資需要通過輪船沿長江運(yùn)送至武漢,已知該運(yùn)送物資的輪船在航行中每小時的燃料費(fèi)和它的速度的立方成正比,已知當(dāng)速度為10海里/時時,燃料費(fèi)是6元/時,而其他與速度無關(guān)的費(fèi)用是96元/時,問當(dāng)輪船的速度是多少時,航行1海里所需的費(fèi)用總和最?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,左頂點(diǎn)為,過橢圓的右焦點(diǎn)作互相垂直的兩條直線和,分別交直線于,兩點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)求的面積的最小值;
(Ⅲ)設(shè)直線與橢圓的另一個交點(diǎn)為,橢圓的右頂點(diǎn)為,求證:,,三點(diǎn)共線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為的正方形和高為的等腰梯形所在的平面互相垂直,,,與交于點(diǎn),點(diǎn)為線段上任意一點(diǎn).
(Ⅰ)求證:平面;
(Ⅱ)求與平面所成角的正弦值;
(Ⅲ)是否存在點(diǎn)使平面與平面垂直,若存在,求出的值,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),其右焦點(diǎn)為,以坐標(biāo)原點(diǎn)為圓心,橢圓短半軸長為半徑的圓與直線相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)經(jīng)過點(diǎn)的直線,分別交橢圓于,及,四點(diǎn),且,探究:是否存在常數(shù),使得.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),,,其中是的導(dǎo)函數(shù).
(1)令,,,猜想的表達(dá)式,并給出證明;
(2)若恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com