考點(diǎn):函數(shù)單調(diào)性的判斷與證明
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用分離常數(shù)法可得:函數(shù)y=
=1+
,令u=a
x+1,則u>1,y=
+1,進(jìn)而根據(jù)反比例函數(shù)的單調(diào)性,指數(shù)函數(shù)的單調(diào)性和復(fù)合函數(shù)單調(diào)性“同增異減”的原則,可得函數(shù)y=
的單調(diào)性.
解答:
解:∵函數(shù)y=
=
=1+
,
令u=a
x+1,則u>1,y=
+1,
當(dāng)0<a<1時(shí),u=a
x+1為減函數(shù),y=
+1為增函數(shù),故函數(shù)y=
為減函數(shù);
當(dāng)a>1時(shí),u=a
x+1為增函數(shù),y=
+1為增函數(shù),故函數(shù)y=
為增函數(shù);
點(diǎn)評:本題考查的知識點(diǎn)是函數(shù)單調(diào)性的判斷與證明,反比例函數(shù)的單調(diào)性,指數(shù)函數(shù)的單調(diào)性和復(fù)合函數(shù)單調(diào)性,難度中檔.