設函數(shù)f(x)=x2+|x-a|,試判斷函數(shù)f(x)的奇偶性.
考點:函數(shù)奇偶性的判斷
專題:函數(shù)的性質及應用
分析:根據(jù)函數(shù)奇偶性的定義,分別進行判斷即可.
解答: 解:∵f(x)=x2+|x-a|,
∴f(-x)=x2+|-x-a|=x2+|x+a|,
若函數(shù)為偶函數(shù),則f(-x)=f(x),
即x2+|x-a|=x2+|x+a|,
∴|x-a|=|x+a|,解得a=0,
若a≠0,則x2+|x-a|≠x2+|x+a|,即f(-x)≠f(x),且f(-x)≠-f(x),
∴此時函數(shù)為非奇非偶函數(shù),
即a=0時,函數(shù)為偶函數(shù),
a≠0時,函數(shù)為非奇非偶函數(shù).
點評:本題主要函數(shù)奇偶性的判斷,根據(jù)函數(shù)奇偶性的定義是解決本題的關鍵,注意要對a進行分類討論.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

函數(shù)lnx≤xem2-m-1對任意的正實數(shù)x恒成立,則m的取值范圍是( 。
A、(-∞,0]∪[1,+∞)
B、[0,1]
C、[e,2e]
D、(-∞,e)∪[2e,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C的對邊分別為a,b,c,cosC=
3
10

(Ⅰ)若
CB
CA
=
9
2
,求c的最小值;
(Ⅱ)設向量
x
=(2sinB,-
3
)
,
y
=(cos2B,1-2sin2
B
2
)
,且
x
y
,求sin(B-A)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在數(shù)列{an}中,a1=-
1
2
,2an=an-1-n-1(n≥2,n∈N*),設bn=an+n.
(Ⅰ)證明:數(shù)列{bn}是等比數(shù)列;
(Ⅱ)求數(shù)列{nbn}的前n項和Tn;
(Ⅲ)若cn=(
1
2
)n-an
,Pn為數(shù)列{
cn2+cn+1
cn2+cn
}
的前n項和,求不超過P2014的最大的整數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用反三角函數(shù)的形式表示下列各式中的x值:
(1)sinx=
1
7
,x∈[
π
2
,π
];
(2)cosx=-
5
5
,x∈(-π,0);
(3)tanx=-
2
3
,x∈(
π
2
,π)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

化簡求值:
(1)(lg5)2+lg2•lg5+lg20-
4(-4)2
6125
+2(1+
1
2
log25)

(2)sin50°•(1+
3
tan10°)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某著名汽車公司2013年年初準備將10億元資金投資到“車型更新”項目上,現(xiàn)有兩個項目供選擇:
項目A:新能源汽車,據(jù)市場調研,投資到該項目上,到年底可能獲利40%,也可能虧損80%,且這兩種情況發(fā)生的概率分別為
3
4
1
4
;
項目B:城市越野車,據(jù)市場調研,投資到該項目上,到年底可能獲利50%,可能虧損30%,也可能不賠不賺,且這三種情況發(fā)生的概率分別為
3
5
、
1
6
、
7
30

(Ⅰ) 針對以上兩個投資項目,請你為投資公司選擇一個合理且較為穩(wěn)妥的項目,并說明理由;
(Ⅱ) 假設每年兩個項目的投資環(huán)境及預期獲利均不變,該投資公司按照你所選擇的項目長期投資(每一年的利潤和本金繼續(xù)用作投資),問大約在哪一年的年底總資產(利潤+本金)可以翻一番?(參考數(shù)據(jù):lg2=0.3010)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
x2-2x-3,x≤0
x+1,x>0
,若f(a)=5,則a的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)在R上是單調函數(shù),且滿足對任意x∈R,都有f[f(x)-3x]=4,則f(4)的值是( 。
A、85B、82C、80D、76

查看答案和解析>>

同步練習冊答案