過曲線y=cos2x上的點()的切線方程為_____________.

 

【答案】

【解析】

試題分析:求直線的斜率.,當,.所以切線的方程為

考點:本題主要考查導數(shù)的運算,導數(shù)的幾何意義。

點評:簡單題,在點P處的切線斜率就是函數(shù)在該點的導數(shù)值。先

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)地f(x)=3x+cos2x+sin2x且a=f′(
π
4
),f′(x)
是f(x)的導函數(shù),則過曲線y=x3上一點P(a,b)的切線方程為( �。�
A、3x-y-2=0
B、4x-3y+1=0
C、3x-y-2=0或3x-4y+1=0
D、3x-y-2=0或4x-3y+1=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=3x+cos2x+sin2x,且a=f′(
π4
),f′(x)是f(x)的導函數(shù),則過曲線y=x3上一點P(a,b)的切線方程為
3x-y-2=0
3x-y-2=0

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年山東省聊城市某重點高中高三(上)第二次調(diào)研數(shù)學試卷(理科)(解析版) 題型:選擇題

已知函數(shù)地f(x)=3x+cos2x+sin2x且是f(x)的導函數(shù),則過曲線y=x3上一點P(a,b)的切線方程為( )
A.3x-y-2=0
B.4x-3y+1=0
C.3x-y-2=0或3x-4y+1=0
D.3x-y-2=0或4x-3y+1=0

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年四川省成都市龍泉中學高三(上)10月月考數(shù)學試卷(理科)(解析版) 題型:選擇題

已知函數(shù)地f(x)=3x+cos2x+sin2x且是f(x)的導函數(shù),則過曲線y=x3上一點P(a,b)的切線方程為( )
A.3x-y-2=0
B.4x-3y+1=0
C.3x-y-2=0或3x-4y+1=0
D.3x-y-2=0或4x-3y+1=0

查看答案和解析>>

同步練習冊答案