如圖,菱形ABCD中,,平面ABCD,平面ABCD,
(1)求證:平面BDE;
(2)求銳二面角的大。
(1)證明:見解析;(2).
解析試題分析:(1)利用已有的垂直關(guān)系,以為原點,,為、軸正向,軸過且平行于,建立空間直角坐標系通過計算,,得到,,
達到證明目的.
(2)由知(1)是平面的一個法向量,
設(shè)是平面的一個法向量,利用 ,
確定得到,由<,>及二面角——為銳二面角,得解.
“向量法”往往能將復(fù)雜的證明問題,轉(zhuǎn)化成計算問題,達到化繁為簡,化難為易的目的.
試題解析:(1)證明:連接、,設(shè),
∵為菱形,∴,以為原點,,為、軸正向,軸過且平行于,建立空間直角坐標系(圖1), 2分
則,
,, 4分
∴ ,,∴,,
又,∴⊥平面. 6分
(2)由知(1)是平面的一個法向量,
設(shè)是平面的一個法向量,
,由 ,
得:, 8分
取,得,于是
<
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐P-ABCD中,底面為直角梯形,垂直于底面ABCD,PA=AD=AB=2BC=2,M,N分別為PC,PB的中點.
(Ⅰ)求證:PB⊥DM;
(Ⅱ)求點B到平面PAC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,邊長為4的正方形ABCD與矩形ABEF所在平面互相垂直,M,N分別為AE,BC的中點,AF=3.
(I)求證:DA⊥平面ABEF;
(Ⅱ)求證:MN∥平面CDFE;
(Ⅲ)在線段FE上是否存在一點P,使得AP⊥MN? 若存在,求出FP的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,已知四邊形ABCD是正方形,EA⊥平面ABCD,PD∥EA,AD=PD=2EA=2,F(xiàn),G,H分別為BP,BE,PC的中點。
(Ⅰ)求證:平面FGH⊥平面AEB;
(Ⅱ)在線段PC上是否存在一點M,使PB⊥平面EFM?若存在,求出線段PM的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在四棱錐中,平面,是正三角形,與的交點恰好是中點,又,,點在線段上,且.
(1)求證:;
(2)求證:平面;
(3)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知在側(cè)棱垂直于底面的三棱柱中,,且,點是中點.
(1)求證:平面⊥平面;
(2)若直線與平面所成角的正弦值為,
求三棱錐的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com