【題目】如圖,在圓柱中,點、分別為上、下底面的圓心,平面是軸截面,點在上底面圓周上(異于、),點為下底面圓弧的中點,點與點在平面的同側,圓柱的底面半徑為1,高為2.

(1)若平面平面,證明:;

(2)若直線與平面所成線面角的正弦值等于,證明:平面與平面所成銳二面角的平面角大于.

【答案】(1)見證明;(2)見證明

【解析】

1)由平面FNH⊥平面NHG,得FH⊥平面NHG,又由NG平面NHG,得證.(2)以O2為坐標原點,分別以O2G,O2E,O2O1x、y、z軸建立空間坐標系O2xyz,根據(jù)直線NH與平面NFG所成線面角α的正弦值等于,得到H點坐標,再將證明平面NHG與平面MNFE所成銳二面角的平面角大于.轉化成證明平面NHG與平面MNFE所成銳二面角的余弦值小于來解決.

1)由題知:面,面,

因為,平面,

所以平面,平面

所以.

2)以點為坐標原點,分別以,、、軸建立空間直角坐標系.

所以,

,則,

設平面的法向量,

因為,所以,

所以,即法向量.

因此 .

所以,解得,,所以點.

設面的法向量

因為,所以

所以,即法向量.

因為面的法向量,所以 ,

所以面與面所成銳二面角的平面角大于.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在以為頂點的五面體中,面是邊長為3的菱形.

(1)求證:

(2)若,,,,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐P-ABC中,PA⊥底面ABC,AC⊥BC,H為PC的中點,M為AH中點,PA=AC=2,BC=1.

(Ⅰ)求證:AH⊥平面PBC;

(Ⅱ)求PM與平面AHB成角的正弦值;

(Ⅲ)在線段PB上是否存在點N,使得MN∥平面ABC,若存在,請說明點N的位置,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線 ,其焦點到準線的距離為2,直線與拋物線交于,兩點,過,分別作拋物線的切線,,交于點.

(Ⅰ)求的值;

(Ⅱ)若,求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為選拔A,B兩名選手參加某項比賽,在選拔測試期間,他們參加選拔的5次測試成績(滿分100分)記錄如下:

1)從A,B兩人的成績中各隨機抽取一個,求B的成績比A低的概率;

2)從統(tǒng)計學的角度考慮,你認為選派哪位選手參加比賽更合適?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,是正三角形,四邊形是菱形,點的中點.

(I)求證:// 平面;

(II)若平面平面,, 求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校為調查高二年級學生的身高情況,按隨機抽樣的方法抽取80名學生,得到男生身高情況的頻率分布直方圖((1))和女生身高情況的頻率分布直方圖((2)).已知圖(1)中身高(單位:)內的男生人數(shù)有16.

(Ⅰ)求在抽取的學生中,男女生各有多少人?

(Ⅱ)根據(jù)頻率分布直方圖,完成下列的列聯(lián)表,并判斷能有多大(百分之幾)的把握認為身高與性別有關”?

總計

男生人數(shù)

女生人數(shù)

總計

:參考公式和臨界值表:

,

5.024

6.635

7.879

10.828

0.025

0.010

0.005

0.001

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】19的九個數(shù)字中取三個偶數(shù)四個奇數(shù),試問:

1)能組成多少個沒有重復數(shù)字的七位數(shù)?

2)上述七位數(shù)中三個偶數(shù)排在一起的有幾個?

3)在(1)中的七位數(shù)中,偶數(shù)排在一起、奇數(shù)也排在一起的有幾個?

4)在(1)中任意兩偶數(shù)都不相鄰的七位數(shù)有幾個?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某社區(qū)為了解居民參加體育鍛煉情況,隨機抽取18名男性居民,12名女性居民對他們參加體育鍛煉的情況進行問卷調查.現(xiàn)按參加體育鍛煉的情況將居民分成3類:甲類(不參加體育鍛煉),乙類(參加體育鍛煉,但平均每周參加體育鍛煉的時間不超過5個小時),丙類(參加體育鍛煉,且平均每周參加體育鍛煉的時間超過5個小時),調查結果如下表:

(1)根據(jù)表中的統(tǒng)計數(shù)據(jù),完成下面列聯(lián)表,并判斷是否有的把握認為參加體育鍛煉與否與性別有關?

(2)從抽出的女性居民中再隨機抽取2人進一步了解情況,求所抽取的2人中乙類,丙類各有1人的概率.

附:

查看答案和解析>>

同步練習冊答案