【題目】設(shè)橢圓的方程為,點(diǎn)為坐標(biāo)原點(diǎn),點(diǎn)的坐標(biāo)分別為,,直線的斜率為.

1)求橢圓的方程;

2)若斜率為的直線交橢圓,兩點(diǎn),交軸于點(diǎn),問(wèn)是否存在實(shí)數(shù)使得以為直徑的圓恒過(guò)點(diǎn)?若存在,求的值;若不存在,說(shuō)明理由.

【答案】12)存在;

【解析】

1)根據(jù)題意,設(shè)點(diǎn)的坐標(biāo)為,可得,進(jìn)而可得橢圓的方程;

2)根據(jù)題意,設(shè)直線的方程為,聯(lián)立方程,通過(guò)韋達(dá)定理,假設(shè)存在實(shí)數(shù),使得以為直徑的圓恒過(guò)點(diǎn),即可得,利用向量數(shù)量積為,解得即可.

1)設(shè)點(diǎn)的坐標(biāo)為,,

,,又,,橢圓的方程為.

2)依題意,設(shè)直線的方程為,代入,

.

設(shè),,則,.

假設(shè)存在實(shí)數(shù),使得以為直徑的圓恒過(guò)點(diǎn),則.

,

,

,將,代入,整理得,解得

即當(dāng)時(shí),存在實(shí)數(shù)使得以為直徑的圓恒過(guò)點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)是大于1的自然數(shù),找出所有自然數(shù),使得對(duì)于存在互質(zhì)的自然數(shù)、,滿足.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某同學(xué)為研究網(wǎng)絡(luò)游戲?qū)Ξ?dāng)代青少年的影響作了一次調(diào)查,共調(diào)查了50名同學(xué),其中男生26人,有8人不喜歡玩游戲,而調(diào)查的女生中有9人喜歡玩游戲.

1)根據(jù)以上數(shù)據(jù)完成2×2的列聯(lián)表;

2)根據(jù)以上數(shù)據(jù),在犯錯(cuò)誤的概率不超過(guò)0.025的前提下,能否認(rèn)為喜歡玩電腦游戲與性別有關(guān)系?

男生

女生

總計(jì)

喜歡玩游戲

不喜歡玩游戲

總計(jì)

0.100

0.050

0.025

0.010

0.001

k

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某機(jī)構(gòu)為了解某地區(qū)中學(xué)生在校月消費(fèi)情況,隨機(jī)抽取了 100名中學(xué)生進(jìn)行調(diào)查.如圖是根據(jù)調(diào)査的結(jié)果繪制的學(xué)生在校月消費(fèi)金額的頻率分布直方圖.已知三個(gè)金額段的學(xué)生人數(shù)成等差數(shù)列,將月消費(fèi)金額不低于550元的學(xué)生稱為“高消費(fèi)群”.

(1)求的值,并求這100名學(xué)生月消費(fèi)金額的樣本平均數(shù) (同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

(2)根據(jù)已知條件完成下面列聯(lián)表,并判斷能否有的把握認(rèn)為“高消費(fèi)群”與性別有關(guān)?

附: (其中樣本容量)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】首屆中國(guó)國(guó)際進(jìn)口博覽會(huì)期間,甲、乙、丙三家中國(guó)企業(yè)都有意向購(gòu)買(mǎi)同一種型號(hào)的機(jī)床設(shè)備,他們購(gòu)買(mǎi)該機(jī)床設(shè)備的概率分別為,且三家企業(yè)的購(gòu)買(mǎi)結(jié)果相互之間沒(méi)有影響,則三家企業(yè)中恰有1家購(gòu)買(mǎi)該機(jī)床設(shè)備的概率是

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),若關(guān)于的方程有四個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)的取值范圍是_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)上是世界嚴(yán)重缺水的國(guó)家,城市缺水問(wèn)題較為突出,某市政府為了鼓勵(lì)居民節(jié)約用水,計(jì)劃在本市試行居民生活用水定額管理,即確定一個(gè)合理的居民月用水量標(biāo)準(zhǔn)(噸),用水量不超過(guò)的部分按平價(jià)收費(fèi),超過(guò)的部分按議價(jià)收費(fèi),為了了解全市民月用水量的分布情況,通過(guò)抽樣,獲得了100位居民某年的月用水量(單位:噸),將數(shù)據(jù)按照 ,…, 分成9組,制成了如圖所示的頻率分布直方圖.

(Ⅰ)求直方圖中 的值;

(Ⅱ)已知該市有80萬(wàn)居民,估計(jì)全市居民中月均用水量不低于3噸的人數(shù),并說(shuō)明理由;

(Ⅲ)若該市政府希望使的居民每月的用水量不超過(guò)標(biāo)準(zhǔn)(噸),估計(jì)的值,并說(shuō)明理由;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(I)討論函數(shù)的單調(diào)性;

(II)設(shè).如果對(duì)任意,,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知直線,拋物線).

(1)若直線過(guò)拋物線的焦點(diǎn),求拋物線的方程;

(2)已知拋物線上存在關(guān)于直線對(duì)稱的相異兩點(diǎn)

①求證:線段PQ的中點(diǎn)坐標(biāo)為;

②求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案