已知函數(shù)f(x)=|lgx|,若0<a<b,且f(a)=f(b),則a+2b的取值范圍是
(3,+∞)
(3,+∞)
分析:畫出函數(shù)f(x)的圖象,則數(shù)形結(jié)合可知0<a<1,b>1,且ab=1,再將所求a+2b化為關(guān)于a的一元函數(shù),利用函數(shù)單調(diào)性求函數(shù)的值域即可
解答:解:畫出y=|lgx|的圖象如圖:
∵0<a<b,且f(a)=f(b),
∴|lga|=|lgb|且0<a<1,b>1
∴-lga=lgb
即ab=1
∴y=a+2b=a+
2
a
,a∈(0,1)
∵y=a+
2
a
在(0,1)上為減函數(shù),
∴y>1+
2
1
=3
∴a+2b的取值范圍是(3,+∞)
故答案為 (3,+∞)
點評:本題主要考查了對數(shù)函數(shù)的圖象和性質(zhì),利用“對勾”函數(shù)求函數(shù)值域的方法,數(shù)形結(jié)合的思想方法,轉(zhuǎn)化化歸的思想方法,屬基礎(chǔ)題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函數(shù)f(x)的最小正周期;
(2)若函數(shù)y=f(2x+
π
4
)
的圖象關(guān)于直線x=
π
6
對稱,求φ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)為定義在R上的奇函數(shù),且當(dāng)x>0時,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,時f(x)的表達(dá)式;
(2)若關(guān)于x的方程f(x)-a=o有解,求實數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=aInx-ax,(a∈R)
(1)求f(x)的單調(diào)遞增區(qū)間;(文科可參考公式:(Inx)=
1
x

(2)若f′(2)=1,記函數(shù)g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在區(qū)間(1,3)上總不單調(diào),求實數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點A(1,f(1))處的切線l與直線3x-y+2=0平行,若數(shù)列{
1
f(n)
}
的前n項和為Sn,則S2010的值為(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在區(qū)間(-1,1)上的奇函數(shù),且對于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,則實數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案