等差數(shù)列{an}中,a5=5,前5項(xiàng)和S5=10,則其公差d=
 
考點(diǎn):等差數(shù)列的通項(xiàng)公式
專題:等差數(shù)列與等比數(shù)列
分析:由等差數(shù)列的通項(xiàng)公式和求和公式可得a1和d的方程組,解之即可.
解答: 解:設(shè)等差數(shù)列{an}的公差為d,
則a5=a1+4d=5,S5=5a1+
5×4
2
d=10
聯(lián)立解得a1=-1,d=
3
2
,
故答案為:
3
2
點(diǎn)評:本題考查等差數(shù)列的通項(xiàng)公式和求和公式,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=mx+lnx,其中m為常數(shù),e為自然對數(shù)的底數(shù).
(1)當(dāng)m=-1時(shí),求f(x)的最大值;
(2)若f(x)在區(qū)間(0,e]上的最大值為-3,求m的值;
(3)當(dāng)m=-1時(shí),g(x)=
lnx
x
+
1
2
,試證明函數(shù)y=|f(x)|的圖象恒在函數(shù)y=g(x)的圖象的上方.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四面體ABCD中,已知所有棱長都為a,點(diǎn)E、F分別是AB、CD的中點(diǎn).異面直線EF、AD所成角的大小為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:?x∈[0,1],a≥ex,命題q:“?x∈R,x2+4x+a=0”,若命題“p∧q”是真命題,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列判斷正確的是
 
(把正確的序號都填上).
①函數(shù)y=|x-1|與y=
x-1, x>1
1-x, x<1
是同一函數(shù);
②函數(shù)y=
x3-x2
x-1
是偶函數(shù);   
③函數(shù)f(x)=
1
x
在(-∞,0)∪(0,+∞)上單調(diào)遞減;
④對定義在R上的函數(shù)f(x),若f(2)≠f(-2),則函數(shù)f(x)必不是偶函數(shù);
⑤若函數(shù)f(x)在(-∞,0)上遞增,在[0,+∞)上也遞增,則函數(shù)f(x)必在R上遞增.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,南北方向的公路l,A地在公路正東2km處,B地在A東偏北30°方向2
3
km處,河流沿岸曲線PQ上任意一點(diǎn)到公路l和到A地距離相等.現(xiàn)要在曲線PQ上一處建一座碼頭,向A、B兩地運(yùn)貨物,經(jīng)測算,從M到A、到B修建費(fèi)用都為a萬元/km,那么,修建這條公路的總費(fèi)用最低是
 
萬元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出一個(gè)算法的程序框圖如圖所示,若輸入的a,b,c依次為2,3,5,則輸出的結(jié)果為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題:“若xy=0,則x=0或y=0”的否命題是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等比數(shù)列{an}中,a1=1,a3=x,a5=5,則實(shí)數(shù)x=
 

查看答案和解析>>

同步練習(xí)冊答案