如圖1,在直角梯形中,,,,分別是的中點,現(xiàn)將沿折起,使平面平面(如圖2),且所得到的四棱錐的正視圖、側(cè)視圖、俯視圖的面積總和為8.

⑴求點到平面的距離;

⑵求二面角的大小的夾角的余弦值;

⑶在線段上確定一點,使平面,并給出證明過程.

 

 

【答案】

 

(1)二面角的大小為

(2)點是線段的中點.

【解析】解:(1)由幾何體的正視圖、側(cè)視圖、俯視圖的面積總和為8可得,取中點,聯(lián)結(jié),分別是的中點,,∴四點共面.

,易得:平面.

平面,故點到平面的距離即為所求.

(2)就是二面角的平面角

中,, 

,即二面角的大小為

解法二:建立如圖所示空間直角坐標(biāo)系,設(shè)平面

的一個法向量為

,又平面的法向量為(1,0,0)

(3)設(shè)

平面是線段的中點.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年山西省高三上學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

如圖1,在直角梯形中,,,. 把沿對角線折起到的位置,如圖2所示,使得點在平面上的正投影恰好落在線段上,連接,點分別為線段的中點.

(1)求證:平面平面;

(2)求直線與平面所成角的正弦值;

(3)在棱上是否存在一點,使得到點四點的距離相等?請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年北京市海淀區(qū)高三5月期末練習(xí)(二模)理科數(shù)學(xué)試卷(解析版) 題型:解答題

如圖1,在直角梯形中,,

. 把沿對角線折起到的位置,如圖2所示,使得點在平面上的正投影恰好落在線段上,連接,點分別為線段的中點.

(I)求證:平面平面

(II)求直線與平面所成角的正弦值;

(III)在棱上是否存在一點,使得到點四點的距離相等?請說明理由.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省高三4月模擬理科數(shù)學(xué)試卷(解析版) 題型:解答題

如圖1, 在直角梯形中, , ,為線段的中點. 將沿折起,使平面平面,得到幾何體,如圖2所示.

(1)求證:平面

(2)求二面角的余弦值.   

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆廣東省汕頭市高二下學(xué)期期中文科數(shù)學(xué)試卷(解析版) 題型:解答題

如圖1,在直角梯形中,,,且

現(xiàn)以為一邊向形外作正方形,然后沿邊將正方形翻折,使平面與平面垂直,的中點,如圖2.

(1)求證:∥平面;

(2)求證:平面

(3)求點到平面的距離.

  

                                    圖

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年天津市天津一中高三下學(xué)期第五次月考數(shù)學(xué)(理) 題型:解答題

如圖1,在直角梯形中, ,
把△沿對角線折起后如圖2所示(點記為點), 點在平面上的正投影 落在線段上, 連接.
(1) 求直線與平面所成的角的大小;
(2)   求二面角的大小的余弦值.

圖1                            圖2

查看答案和解析>>

同步練習(xí)冊答案