(本題滿分12分)作圖(不要求寫出作法,請保留作圖痕跡)
(1) 畫出下圖幾何體的三視圖(尺寸自定);
(2) 畫出一個底面直徑為4cm,高為2cm的圓錐的直觀圖
科目:高中數(shù)學 來源: 題型:解答題
如圖,用半徑為cm,面積為cm2的扇形鐵皮制作一個無蓋的圓錐形容器(銜接部分忽略不計), 該容器最多盛水多少?(結(jié)果精確到0.1 cm3)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(12分) 已知四棱錐的三視圖如下圖所示,是側(cè)棱上的動點.
(1) 求四棱錐的體積;
(2) 是否不論點在何位置,都有?證明你的結(jié)論;
(3) 若點為的中點,求二面角的大。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分9分)
已知幾何體A—BCED 的三視圖如圖所示,其中側(cè)視圖和俯視圖都是腰長為4的等腰直角三角形,正視圖為直角梯形.求:
(1)異面直線DE 與AB 所成角的余弦值;
(2)二面角A—ED—B 的正弦值;
(3)此幾何體的體積V 的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(方案二)如圖是一個長方體被削去一部分后的多面體的直觀圖,它的正視圖和側(cè)視圖已經(jīng)畫出.(單位:cm).
(Ⅰ)在正視圖下面,按照畫三視圖的要求畫出該多面體的俯視圖;
(Ⅱ)(普通高中做)求三棱錐的體積.
(示范性高中做)求多面體的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
如圖6,已知正三棱柱ABC—A1B1C1中,D是BC的中點,AA1=AB=1。
(1)求證:平面AB1D⊥平面B1BCC1;
(2)求證:A1C//平面AB1D;
(3)求二面角B—AB1—D的正切值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分13分)
如圖,圓柱OO1內(nèi)有一個三棱柱ABC-A1B1C1,
三棱柱的底面為圓柱底面的內(nèi)接三角形,且AB是圓O的直徑。
(Ⅰ)證明:平面A1ACC1⊥平面B1BCC1;
(Ⅱ)設AB=AA1。在圓柱OO1內(nèi)隨機選取一點,記該點取自于
三棱柱ABC-A1B1C1內(nèi)的概率為P。
(i) 當點C在圓周上運動時,求P的最大值;
記平面A1ACC1與平面B1OC所成的角為(0°< 90°)。當P取最大值時,求cos的值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:單選題
如圖是一個正方體的展開圖,如果將它還原為正方體,那么AB,CD,EF,GH這四條線段所在的直線是異面直線的有( )
A.1對 | B.2對 | C.3對 | D.4對 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:單選題
如圖,在四邊形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,將△ABD沿BD折起,使平面ABD⊥平面BCD,構(gòu)成三棱錐A-BCD,則在三棱錐A-BCD中,下列命題正確的是( )
A.平面ABD⊥平面ABC | B.平面ADC⊥平面BDC |
C.平面ABC⊥平面BDC | D.平面ADC⊥平面ABC |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com