精英家教網 > 高中數學 > 題目詳情

已知函數.
(1)若在區(qū)間單調遞增,求的最小值;
(2)若,對,使成立,求的范圍.

(1);(2).

解析試題分析:(1)在區(qū)間單調遞增,則恒成立.
分離變量得:,所以a大于等于的最大值即可.
(2)對,使,則應有
下面就分別求出的最大值,然后解不等式即得a的范圍.
試題解析:(1)由恒成立
得: 而單調遞減,從而

                   6分
(2)對,使
單調遞增
          8分
上單調遞減,則
                12分
考點:導數的應用.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

設函數時取得極值.
(1)求a、b的值;(2)若對于任意的,都有成立,求c的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數(k為常數,e=2.71828……是自然對數的底數),曲線在點處的切線與x軸平行。
(1)求k的值;
(2)求的單調區(qū)間;
(3)設,其中的導函數,證明:對任意,

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(Ⅰ)求處的切線方程;
(Ⅱ)求的單調區(qū)間;
(Ⅲ)若,求證:.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數.
(1)若曲線在它們的交點處有相同的切線,求實數的值;
(2)當時,若函數在區(qū)間內恰有兩個零點,求實數的取值范圍;
(3)當,時,求函數在區(qū)間上的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數上是增函數,上是減函數.
(1)求函數的解析式;
(2)若時,恒成立,求實數m的取值范圍;
(3)是否存在實數b,使得方程在區(qū)間上恰有兩個相異實數根,若存在,求出b的范圍,若不存在說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,為常數)
(1)當恒成立,求實數的取值范圍;
(2)若函數有對稱中心為A(1,0),求證:函數的切線在切點處穿過圖象的充要條件是恰為函數在點A處的切線.(直線穿過曲線是指:直線與曲線有交點,且在交點左右附近曲線在直線異側)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(I)若,求函數的單調區(qū)間;
(Ⅱ)求證:
(Ⅲ)若函數的圖象在點處的切線的傾斜角為,對于任意的,函數的導函數)在區(qū)間上總不是單調函數,求的取值范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

,.
(Ⅰ)當時,求曲線處的切線的方程;
(Ⅱ)如果存在,使得成立,求滿足上述條件的最大整數;
(Ⅲ)如果對任意的,都有成立,求實數的取值范圍.

查看答案和解析>>

同步練習冊答案