【題目】雙曲線 =1(a>0,b>0)的離心率為2,坐標(biāo)原點(diǎn)到直線AB的距離為 ,其中A(a,0),B(0,﹣b).
(1)求雙曲線的方程;
(2)若B1是雙曲線虛軸在y軸正半軸上的端點(diǎn),過(guò)B作直線與雙曲線交于M,N兩點(diǎn),求B1M⊥B1N時(shí),直線MN的方程.

【答案】
(1)解:由題意可知:雙曲線 =1(a>0,b>0)的焦點(diǎn)在x軸上,

離心率為e= =2,即c=2a,

由A(a,0),B(0,﹣b),

∴直線AB的方程為:bx﹣ay﹣ab=0,

由點(diǎn)到直線的距離公式可知:d= = ,

由a2+b2=c2,

代入解得:a= ,b=3,c=2 ,

∴雙曲線的標(biāo)準(zhǔn)方程為: ;


(2)解:由(1)可知:B1(0,3),B(0,﹣3).

直線MN的斜率顯然存在,設(shè)MN的方程為:y=kx﹣3,M(x1,y1),N(x2,y2),

,整理得:(3﹣k2)x2+6kx﹣18=0,

△=36k2﹣4(﹣18)(3﹣k2)=﹣k2+6>0,

解得:﹣ <k< ,

由韋達(dá)定理可知:x1+x2=﹣ ,x1x2=﹣

∴y1y2=k2x1x2﹣3k(x1+x2)+9,y1+y2=k(x1+x2)﹣6,

=(x1,y1﹣3), =(x2,y2﹣3)

由B1M⊥B1N,

=0,

∴x1x2+(y1﹣3)(y2﹣3)=0,

x1x2+y1y2﹣3(y1+y2)+9=0,

∴(1+k2)x1x2﹣6k(x1+x2)+36=0,

將x1+x2= ,x1x2=﹣ ,代入整理得:k2=5,

解得:k=± ,滿足﹣ <k< ,

∴直線MN的方程為:y= x﹣3或y=﹣ ﹣3.


【解析】(1)由題意可知:雙曲線的焦點(diǎn)在x軸上,離心率為e= =2,即c=2a,由點(diǎn)(0,0)到直線bx﹣ay﹣ab=0的距離公式:d= = ,a2+b2=c2 , 即可求得a和b的值,求得雙曲線的方程;(2)由題意設(shè)直線MN的方程為:y=kx﹣3,代入雙曲線方程,由△>0,求得k的取值范圍,由韋達(dá)定理可知:x1+x2=﹣ ,x1x2=﹣ , =(x1 , y1﹣3), =(x2 , y2﹣3),由B1M⊥B1N,則 =0,由向量數(shù)量積的坐標(biāo)表示即可求得k的值,求得直線MN的方程.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 經(jīng)過(guò)點(diǎn),左右焦點(diǎn)分別為、,圓與直線相交所得弦長(zhǎng)為2. 

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)設(shè)是橢圓上不在軸上的一個(gè)動(dòng)點(diǎn), 為坐標(biāo)原點(diǎn),過(guò)點(diǎn)的平行線交橢圓、兩個(gè)不同的點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,已知AB=2,cosB= (Ⅰ)若AC=2 ,求sinC的值;
(Ⅱ)若點(diǎn)D在邊AC上,且AD=2DC,BD= ,求BC的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】【選做題】

A.[選修4-1:幾何證明選講]

如圖,四邊形是圓的內(nèi)接四邊形, , 的延長(zhǎng)線交的延長(zhǎng)線于點(diǎn).

求證: 平分.

B.[選修4-2:矩陣與變換]

已知變換 ,試寫出變換對(duì)應(yīng)的矩陣,并求出其逆矩陣.

C.[選修4-4:坐標(biāo)系與參數(shù)方程]

在平面直角坐標(biāo)系中,已知直線的參數(shù)方程為為參數(shù)),曲線的參數(shù)方程為為參數(shù)).若直線與曲線相交于兩點(diǎn),求線段的長(zhǎng).

D.[選修4-5:不等式選講]

設(shè)均為正數(shù),且,求證 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校用簡(jiǎn)單隨機(jī)抽樣方法抽取了30名同學(xué),對(duì)其每月平均課外閱讀時(shí)間(單位:小時(shí))進(jìn)行調(diào)查,莖葉圖如圖:

若將月均課外閱讀時(shí)間不低于30小時(shí)的學(xué)生稱為“讀書迷”.

(1)將頻率視為概率,估計(jì)該校900名學(xué)生中“讀書迷”有多少人?

(2)從已抽取的7名“讀書迷”中隨機(jī)抽取男、女“讀書迷”各1人,參加讀書日宣傳活動(dòng).

(i)共有多少種不同的抽取方法?

(ii)求抽取的男、女兩位“讀書迷”月均讀書時(shí)間相差不超過(guò)2小時(shí)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某建材公司在兩地各有一家工廠,它們生產(chǎn)的建材由公司直接運(yùn)往地.由于土路交通運(yùn)輸不便,為了減少運(yùn)費(fèi),該公司預(yù)備投資修建一條從地或地直達(dá)地的公路;若選擇從某地修建公路,則另外一地生產(chǎn)的建材可先運(yùn)輸至該地再運(yùn)至以節(jié)約費(fèi)用.已知,之間為土路,土路運(yùn)費(fèi)為每噸千米20元,公路的運(yùn)費(fèi)減半,,三地距離如圖所示.為了制定修路計(jì)劃,公司統(tǒng)計(jì)了最近10天兩個(gè)工廠每天的建材產(chǎn)量,得到下面的柱形圖,以兩個(gè)工廠在最近10天日產(chǎn)量的頻率代替日產(chǎn)量的概率.

(1)求“,兩地工廠某天的總?cè)债a(chǎn)量為20噸”的概率;

(2)以修路后每天總的運(yùn)費(fèi)的期望為依據(jù),判斷從,哪一地修路更加劃算.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某淘寶店經(jīng)過(guò)對(duì)春節(jié)七天假期的消費(fèi)者進(jìn)行統(tǒng)計(jì),發(fā)現(xiàn)在金額不超過(guò)1000元的消費(fèi)者中男女比例為,該店按此比例抽取了100名消費(fèi)者進(jìn)行進(jìn)一步分析,得到下表女性消費(fèi)情況:

消費(fèi)金額(元)

人數(shù)

5

10

15

47

3

男性消費(fèi)情況:

消費(fèi)金額(元)

人數(shù)

2

3

10

3

2

若消費(fèi)金額不低于600元的網(wǎng)購(gòu)者為“網(wǎng)購(gòu)達(dá)人”,低于600元的網(wǎng)購(gòu)者為“非網(wǎng)購(gòu)達(dá)人”

(1)分別計(jì)算女性和男性消費(fèi)的平均數(shù),并判斷平均消費(fèi)水平高的一方“網(wǎng)購(gòu)達(dá)人”出手是否更闊綽?

(2)根據(jù)以上統(tǒng)計(jì)數(shù)據(jù)填寫如下列聯(lián)表,并回答能否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為“是否為‘網(wǎng)購(gòu)達(dá)人’與性別有關(guān)”.

女性

男性

合計(jì)

“網(wǎng)購(gòu)達(dá)人”

“非網(wǎng)購(gòu)達(dá)人”

合計(jì)

附: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,函數(shù),.

(1)若恒成立,求的取值范圍;

(2)證明:不論取何正值,總存在正數(shù),使得當(dāng)時(shí),恒有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在銳角三角形ABC中,2sin(A+B)﹣ =0,c=
(1)求角C的大小;
(2)求△ABC的面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案