如圖,已知直線l與拋物線x2=4y相切于點(diǎn)P(2,1),且與x軸交于點(diǎn)A,O為坐標(biāo)原點(diǎn),點(diǎn)B的坐標(biāo)為(2,0),(1)若動(dòng)點(diǎn)M滿足,求點(diǎn)M的軌跡C;(2)若過點(diǎn)B的直線l′(斜率不等于零)與(1)中的軌跡C交于不同的兩點(diǎn)E,F(E在B,F之間)試求△OBE與△OBF面積之比的取值范圍.

 

【答案】

(I)動(dòng)點(diǎn)M的軌跡C為以原點(diǎn)為中心,焦點(diǎn)在x軸上,長(zhǎng)軸長(zhǎng)為,短軸長(zhǎng)為2的橢圓;(II)△OBE與△OBF面積之比的取值范圍是(3-2,1).

【解析】根據(jù)導(dǎo)數(shù)的幾何意義,可以得出直線的方程,從而得出A坐標(biāo),再設(shè)設(shè)帶入已知條件得出x,y的關(guān)系式;直線與橢圓的關(guān)系通常聯(lián)立直線與橢圓方程得出關(guān)于x的一元二次方程,,結(jié)合韋達(dá)定理,

表達(dá)出△OBE與△OBF面積之比的代數(shù)式。

解:(I)由,  

∴直線l的斜率為,故l的方程為,

∴點(diǎn)A坐標(biāo)為(1,0)設(shè)    則

整理,得 

∴動(dòng)點(diǎn)M的軌跡C為以原點(diǎn)為中心,焦點(diǎn)在x軸上,長(zhǎng)軸長(zhǎng)為,短軸長(zhǎng)為2的橢圓

(II)如圖,由題意知直線l的斜率存在且不為零,設(shè)l方程為y=k(x-2)(k≠0)①

將①代入,整理,得

,

由△>0得0<k2<0.5.   設(shè)E(x1,y1),F(xiàn)(x2,y2)

 ②   令,

由此可得由②知

.

∴△OBE與△OBF面積之比的取值范圍是(3-2,1)

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知直線l與拋物線x2=4y相切于點(diǎn)P(2,1),且與x軸交于點(diǎn)A,O為坐標(biāo)原點(diǎn),定點(diǎn)B的坐標(biāo)為(2,0).
(1)若動(dòng)點(diǎn)M滿足
AB
BM
+
2
|
AM
|
=0,求動(dòng)點(diǎn)M的軌跡Q;
(2) F1,F(xiàn)2是軌跡Q的左、右焦點(diǎn),過F1作直線l(不與x軸重合),l與軌跡Q相交于C,D,并與圓x2+y2=3相交于E,F(xiàn).當(dāng)
F2E
F2F
,且λ∈[
2
3
,1]時(shí),求△F2CD的面積S的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知直線l與拋物線x2=4y相切于點(diǎn)P(2,1),且與x軸交于點(diǎn)A,定點(diǎn)B的坐標(biāo)為(2,0).
(I)若動(dòng)點(diǎn)M滿足
AB
BM
+
2
|
AM
|=0
,求點(diǎn)M的軌跡C;
(Ⅱ)若過點(diǎn)B的直線l′(斜率不等于零)與(I)中的軌跡C交于不同的兩點(diǎn)E、F(E在B、F之間),試求△OBE與△OBF面積之比的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知直線l與半徑為1的⊙D相切于點(diǎn)C,動(dòng)點(diǎn)P到直線l的距離為d,若,建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知直線l與半徑為1的⊙D相切于點(diǎn)C,動(dòng)點(diǎn)P到直線l的距離為d,若,建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求點(diǎn)P的軌跡方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案