已知函教f(x)=Asin(ωx+φ)(A>0,ω>0)的圖象與直線y=b(0<b<A)的三個相鄰交點(diǎn)的橫坐標(biāo)分別是2,4,8,則f(x)的單調(diào)遞增區(qū)間是( )
A.[6kπ,6kπ+3],k∈Z
B.[6k-3,6k],k∈Z
C.[6k,6k+3],k∈Z
D.[6kπ-3,6kπ],k∈Z
【答案】分析:先根據(jù)交點(diǎn)橫坐標(biāo)求出最小正周期,進(jìn)而可得w的值,再由當(dāng)x=3時(shí)函數(shù)取得最大值確定φ的值,最后根據(jù)正弦函數(shù)的性質(zhì)可得到答案.
解答:解:∵函教f(x)=Asin(ωx+φ)(A>0,ω>0)的圖象與直線y=b(0<b<A)的三個相鄰交點(diǎn)的橫坐標(biāo)分別是2,4,8
∴T=6=∴w=,且當(dāng)x=3時(shí)函數(shù)取得最大值
×3+φ=∴φ=-
∴f(x)=Asin(x-
∴-x-
∴6k≤x≤6k+3
故選C.
點(diǎn)評:本題主要考查三角函數(shù)的圖象和基本性質(zhì),三角函數(shù)的圖象和性質(zhì)的熟練掌握是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函教f(x)=Asin(ωx+φ)(A>0,ω>0)的圖象與直線y=b(0<b<A)的三個相鄰交點(diǎn)的橫坐標(biāo)分別是2,4,8,則f(x)的單調(diào)遞增區(qū)間是(  )
A、[6kπ,6kπ+3],k∈ZB、[6k-3,6k],k∈ZC、[6k,6k+3],k∈ZD、[6kπ-3,6kπ],k∈Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年遼寧省五校協(xié)作體高三(上)聯(lián)合競賽數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

已知函教f(x)=Asin(ωx+φ)(A>0,ω>0)的圖象與直線y=b(0<b<A)的三個相鄰交點(diǎn)的橫坐標(biāo)分別是2,4,8,則f(x)的單調(diào)遞增區(qū)間是( )
A.[6kπ,6kπ+3],k∈Z
B.[6k-3,6k],k∈Z
C.[6k,6k+3],k∈Z
D.[6kπ-3,6kπ],k∈Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年山東省淄博市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:選擇題

已知函教f(x)=Asin(ωx+φ)(A>0,ω>0)的圖象與直線y=b(0<b<A)的三個相鄰交點(diǎn)的橫坐標(biāo)分別是2,4,8,則f(x)的單調(diào)遞增區(qū)間是( )
A.[6kπ,6kπ+3],k∈Z
B.[6k-3,6k],k∈Z
C.[6k,6k+3],k∈Z
D.[6kπ-3,6kπ],k∈Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年高考數(shù)學(xué)復(fù)習(xí)卷D(四)(解析版) 題型:選擇題

已知函教f(x)=Asin(ωx+φ)(A>0,ω>0)的圖象與直線y=b(0<b<A)的三個相鄰交點(diǎn)的橫坐標(biāo)分別是2,4,8,則f(x)的單調(diào)遞增區(qū)間是( )
A.[6kπ,6kπ+3],k∈Z
B.[6k-3,6k],k∈Z
C.[6k,6k+3],k∈Z
D.[6kπ-3,6kπ],k∈Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省菏澤市鄄城實(shí)驗(yàn)中學(xué)高三(下)雙周適應(yīng)性訓(xùn)練數(shù)學(xué)試卷5(文科)(解析版) 題型:選擇題

已知函教f(x)=Asin(ωx+φ)(A>0,ω>0)的圖象與直線y=b(0<b<A)的三個相鄰交點(diǎn)的橫坐標(biāo)分別是2,4,8,則f(x)的單調(diào)遞增區(qū)間是( )
A.[6kπ,6kπ+3],k∈Z
B.[6k-3,6k],k∈Z
C.[6k,6k+3],k∈Z
D.[6kπ-3,6kπ],k∈Z

查看答案和解析>>

同步練習(xí)冊答案