若當(dāng)函數(shù)f(-x)=f(x)時(shí),則稱f(x)為偶函數(shù).設(shè)f(x)=(m-2)x2-3mx+1(x∈R)為偶函數(shù),那么它的單調(diào)增區(qū)間是____________.

解析:f(-x)=f(x)m=0,

∴f(x)=-2x2+1.

∴在(-∞,0]上遞增.

答案:(-∞,0].


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出以下五個(gè)結(jié)論:
(1)函數(shù)f(x)=
x-1
2x+1
的對(duì)稱中心是(-
1
2
,-
1
2
)

(2)若關(guān)于x的方程x-
1
x
+k=0
在x∈(0,1)沒(méi)有實(shí)數(shù)根,則k的取值范圍是k≥2;
(3)已知點(diǎn)P(a,b)與點(diǎn)Q(1,0)在直線2x-3y+1=0兩側(cè),當(dāng)a>0且a≠1,b>0時(shí),
b
a-1
的取值范圍為(-∞,-
1
3
)∪(
2
3
,+∞)

(4)若將函數(shù)f(x)=sin(2x-
π
3
)
的圖象向右平移?(?>0)個(gè)單位后變?yōu)榕己瘮?shù),則?的最小值是
12
;
(5)已知m,n是兩條不重合的直線,α,β是兩個(gè)不重合的平面,若m⊥α,n∥β且m⊥n,則α⊥β;其中正確的結(jié)論是:
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)y=f(x)的定義域?yàn)镽+,若對(duì)于給定的正數(shù)k,定義函數(shù):fk(x)=
k,f(x)≤k
f(x),f(x)>k
,則當(dāng)函數(shù)f(x)=
1
x
,k=1
時(shí),函數(shù)fk(x)的圖象與直線x=
1
4
,x=2,y=0圍成的圖形的面積為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年人教版高考數(shù)學(xué)文科二輪專題復(fù)習(xí)提分訓(xùn)練2練習(xí)卷(解析版) 題型:解答題

已知函數(shù)f(x)=ax--3ln x,其中a為常數(shù).

(1)當(dāng)函數(shù)f(x)的圖象在點(diǎn)處的切線的斜率為1時(shí),求函數(shù)f(x)上的最小值;

(2)若函數(shù)f(x)在區(qū)間(0,+)上既有極大值又有極小值,a的取值范圍;

(3)(1)的條件下,過(guò)點(diǎn)P(1,-4)作函數(shù)F(x)=x2[f(x)+3lnx-3]圖象的切線,試問(wèn)這樣的切線有幾條?并求出這些切線方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:0111 月考題 題型:解答題

已知a>0且a≠1,
(1)求函數(shù)f(x)的解析式;
(2)試判定函數(shù)f(x)的奇偶性與單調(diào)性;
(3)若對(duì)于函數(shù)f(x),當(dāng)x∈(-1,1)時(shí),有f(1-m)+f(3m-2)<0恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案