在四面體中,三組對(duì)棱棱長(zhǎng)分別相等且依次為、、15,則此四面體的外接球的體積為_(kāi)_______
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

( 14分)在如圖的多面體中,⊥平面,,,,,的中點(diǎn).
(1) 求證:平面;
(2) 求異面直線(xiàn)所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿(mǎn)分12分,(Ⅰ)小問(wèn)4分,(Ⅱ)小問(wèn)6分,(Ⅲ)小問(wèn)2分.)
如圖所示,直二面角中,四邊形是邊長(zhǎng)為的正方形,,上的點(diǎn),且⊥平面
(Ⅰ)求證:⊥平面
(Ⅱ)求二面角的大。
(Ⅲ)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

半徑為1的球面上的四點(diǎn)A,B,C,D是正四面體的頂點(diǎn),則A與B兩點(diǎn)間的球面距離為
A.a(chǎn)rccos(-)B.a(chǎn)rccos(-)C.a(chǎn)rccos(-)D.a(chǎn)rccos(-)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分12分)
如圖,三棱柱的所有棱長(zhǎng)都相等,且底面,的中點(diǎn),
(Ⅰ)求證:
(Ⅱ)求證:平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分14分)
如圖6,在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC,E是PC的中點(diǎn),EF⊥PB交PB于點(diǎn)F.

(Ⅰ) 若PD=DC=2求三棱錐A-BDE的體積;
(Ⅱ) 證明PA∥平面EDB;
(Ⅲ) 證明PB⊥平面EFD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(12分)如圖,在直三棱柱中,,為的中點(diǎn).(1)求證:⊥平面;(2)設(shè)上一點(diǎn),試確定的位置,使平面⊥平面,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

“如果一條直線(xiàn)與一個(gè)平面垂直,則稱(chēng)這條直線(xiàn)與這個(gè)平面構(gòu)成一組正交線(xiàn)面對(duì);如果兩個(gè)平面互相垂直,則稱(chēng)這兩個(gè)平面構(gòu)成一組正交平面對(duì).”在正方體的12條棱和6個(gè)表面中,能構(gòu)成正交線(xiàn)面對(duì)和正交平面對(duì)的組數(shù)分別是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在三棱錐中,,中點(diǎn)。(1)求證:平面
(2)在線(xiàn)段上是否存在一點(diǎn),使二面角的平面角的余弦值為?若存在,確定點(diǎn)位置;若不存在,說(shuō)明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案