某學校為了選拔學生參加“XX市中學生知識競賽”,先在本校進行選拔測試(滿分150分),若該校有100名學生參加選拔測試,并根據(jù)選拔測試成績作出如圖所示的頻率分布直方圖.
(Ⅰ)根據(jù)頻率分布直方圖,估算這100名學生參加選拔測試的平均成績;
(Ⅱ)若通過學校選拔測試的學生將代表學校參加市知識競賽,知識競賽分為初賽和復賽,初賽中每人最多有5次答題機會,累計答對3題或答錯3題即終止,答對3題者方可參加復賽.假設參賽者甲答對每一個題的概率都是
2
3
,求甲在初賽中答題個數(shù)的分布列和數(shù)學期望.
解析:(Ⅰ)設平均成績的估計值為
.
x
,則:
.
X
=(20×0.001+40×0.004+60×0.009+80×0.020+100×0.012+120×0.003+140×0.001)×20
=80.4.
(Ⅱ)記甲在初賽中的答題個數(shù)為隨機變量ξ,這ξ的可能值為3,4,5,
P(ξ=3)=(
2
3
)3+(1-
2
3
)3=
1
3
,
P(ξ=4)=
C23
×(
2
3
)2×(1-
2
3
2
3
+
C13
×
2
3
×(1-
2
3
)2×(1-
2
3
)=
10
27
,
P(ξ=5)=1-
1
3
-
10
27
=
8
27

則ξ的分布列為
ξ345
p
1
3
10
27
8
27
所以ξ數(shù)學期望Eξ=3×
1
3
+4×
10
27
+5×
8
27
=
107
27
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
某車間甲組有10名工人,其中有4名女工人;乙組有5名工人,其中有3名女工人,現(xiàn)采用分層抽樣方法(層內(nèi)采用不放回簡單隨機抽樣)從甲、乙兩組中共抽取3名工人進行技術考核.
(I)求從甲、乙兩組各抽取的人數(shù);          
(II)求從甲組抽取的工人中恰有1名女工人的概率;
(III)記表示抽取的3名工人中男工人數(shù),求的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

深圳市某校中學生籃球隊假期集訓,集訓前共有6個籃球,其中3個是新球(即沒有用過的球),3個是舊球(即至少用過一次的球).每次訓練,都從中任意取出2個球,用完后放回.
(1)設第一次訓練時取到的新球個數(shù)為ξ,求ξ的分布列和數(shù)學期望;
(2)求第二次訓練時恰好取到一個新球的概率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

小王有一天收到6位好友分別發(fā)來的1,2,2,3,3,4條短信,當天他從這6位好友中任取3位的短信閱讀,并且只閱讀已選取的好友的全部短信.
(1)求小王當天閱讀的短信條數(shù)ξ的所有可能取值;
(2)求ξ的數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

甲、乙兩人參加某電視臺舉辦的答題闖關游戲,按照規(guī)則,甲先從6道備選題中一次性抽取3道題獨立作答,然后由乙回答剩余3題,每人答對其中2題就停止答題,即闖關成功.已知在6道被選題中,甲能答對其中的4道題,乙答對每道題的概率都是
2
3

(Ⅰ)求甲、乙至少有一人闖關成功的概率;
(Ⅱ)設甲答對題目的個數(shù)為X,求X的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知隨機變量ξ~B(n,p),若Eξ=3,Dξ=
3
2
,則n=______;p=______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

隨機變量ξ服從二項分布ξ~B(16,P),且Dξ=3,則Eξ等于( 。
A.4B.12C.4或12D.3

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

執(zhí)行下圖所示的程序框圖,若輸入A=2014,B=125,輸出的A的值是____    

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

右圖是一個算法流程圖,則輸出的的值是           .

查看答案和解析>>

同步練習冊答案