有一種密碼,明文是由三個字符組成,密碼是由明文對應(yīng)的五個數(shù)字組成,編碼規(guī)則如下表:明文由表中每一排取一個字符組成且第一排取的字符放在第一位,第二排取的字符放在第二位,第三排取的字符放在第三位,對應(yīng)的密碼由明文對應(yīng)的數(shù)字按相同的次序排列組成.

第一排
明文字符
A
B
C
D
密碼字符
11
12
13
14
第二排
明文字符
E
F
G
H
密碼字符
21
22
23
24
第三排
明文字符
M
N
P
Q
密碼字符
1
2
3
4
設(shè)隨機變量ξ表示密碼中不同數(shù)字的個數(shù).
(1)求
(2)求隨機變量的分布列和數(shù)學(xué)期望.

(1) ;(2)

ξ
2
3
4
P



 
.

解析試題分析:(1)先求出基本事件總的個數(shù),再求出滿足條件的子事件(只能取表格第1,2列中的數(shù)字作為密碼)的個數(shù)為,由古典概型概率公式求解;(2) 先寫出ξ的取值,再結(jié)合的實際意義,分別求出相應(yīng)的概率值,注意寫出分布列需驗證概率和是否為1,再由公式求期望值.
試題解析:(1)密碼中不同數(shù)字的個數(shù)為2的事件為密碼中只有兩個數(shù)字,注意到密碼的第1,2列分別總是1,2,即只能取表格第1,2列中的數(shù)字作為密碼.
.     5分
(2)由題意可知ξ的取值為2,3,4三種情形.
,注意表格的第一排總含有數(shù)字1,第二排總含有數(shù)字2,則密碼中只可能取數(shù)字1,2,3或1,2,4.
.  8分
, ,  10分
∴ξ的分布列為:

ξ
2
3
4
P



.      12分
考點:1.古典概型;2.離散型隨機變量的分布列與期望.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)關(guān)于的一元二次方程.
(1)若是從、、、四個數(shù)中任取的一個數(shù),是從、三個數(shù)中任取的一個數(shù),求上述方程有實根的概率;
(2)若是從區(qū)間任取的一個數(shù),是從區(qū)間任取的一個數(shù),求上述方程有實根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在半徑為1的圓周上任取三點,連接成三角形,這個三角形是銳角三角形的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

小明參加完高考后,某日路過一家電子游戲室,注意到一臺電子游戲機的規(guī)則是:你可在1,2,3,4,5,6點中選一個,押上賭注a元。擲3枚骰子,如果所押的點數(shù)出現(xiàn)1次、2次、3次,那么原來的賭注仍還給你,并且你還分別可以收到賭注的1倍、2倍、3倍的獎勵。如果所押的點數(shù)不出現(xiàn),那么賭注就被莊家沒收。
(1)求擲3枚骰子,至少出現(xiàn)1枚為1點的概率;
(2)如果小明準(zhǔn)備嘗試一次,請你計算一下他獲利的期望值,并給小明一個正確的建議。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

現(xiàn)有A,B兩球隊進行友誼比賽,設(shè)A隊在每局比賽中獲勝的概率都是
(Ⅰ)若比賽6局,求A隊至多獲勝4局的概率;
(Ⅱ)若采用“五局三勝”制,求比賽局數(shù)ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

德陽中學(xué)數(shù)學(xué)競賽培訓(xùn)共開設(shè)有初等代數(shù)、初等幾何、初等數(shù)論和微積分初步共四門課程,要求初等代數(shù)、初等幾何都要合格,且初等數(shù)論和微積分初步至少有一門合格,則能取得參加數(shù)學(xué)競賽復(fù)賽的資格,現(xiàn)有甲、乙、丙三位同學(xué)報名參加數(shù)學(xué)競賽培訓(xùn),每一位同學(xué)對這四門課程考試是否合格相互獨立,其合格的概率均相同,(見下表),且每一門課程是否合格相互獨立,

課    程
初等代數(shù)
初等幾何
初等數(shù)論
微積分初步
合格的概率




(1)求甲同學(xué)取得參加數(shù)學(xué)競賽復(fù)賽的資格的概率;
(2)記表示三位同學(xué)中取得參加數(shù)學(xué)競賽復(fù)賽的資格的人數(shù),求的分布列及期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

一個袋子里裝有7個球, 其中有紅球4個, 編號分別為1,2,3,4; 白球3個, 編號分別為2,3,4. 從袋子中任取4個球 (假設(shè)取到任何一個球的可能性相同).
(Ⅰ) 求取出的4個球中, 含有編號為3的球的概率;
(Ⅱ) 在取出的4個球中, 紅球編號的最大值設(shè)為X ,求隨機變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

一個口袋中裝有2個白球和個紅球(),每次從袋中摸出兩個球(每次摸球后把這兩個球放回袋中),若摸出的兩個球顏色相同為中獎,否則為不中獎.
(Ⅰ) 摸球一次,若中獎概率為,求的值;
(Ⅱ) 若,摸球三次,記中獎的次數(shù)為,試寫出的分布列并求其期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

一個袋中裝有四個形狀大小完全相同的球,球的編號分別為1,2,3,4.
(1)從袋中隨機取兩個球,求取出的球的編號之和不大于4的概率;
(2)先從袋中隨機取一個球,該球的編號為m,將球放回袋中,然后再從袋中隨機取一個球,該球的編號為n,求n<m+2的概率.

查看答案和解析>>

同步練習(xí)冊答案