已知x、y∈R且x2+y2+2x<0,則

[  ]

A.x2+y2+6x+8<0

B.x2+y2+6x+8>0

C.x2+y2+4x+3<0

D.x2+y2+4x+3>0

答案:B
解析:

解析:利用數(shù)形結(jié)合思想:滿足x2+y2+2x<0的點(diǎn)P在圓(x+1)2+y2=1內(nèi),必在圓(x+3)2+y2=1外,即x2+y2+6x+8>0.故選B.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y∈R且x2+y2=1,a,b∈R為常數(shù),t=
a2x2+b2y2
 
+
b2x2+a2y2
則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知x、y∈R且x2+y2+2x<0,則


  1. A.
    x2+y2+6x+8<0
  2. B.
    x2+y2+6x+8>0
  3. C.
    x2+y2+4x+3<0
  4. D.
    x2+y2+4x+3>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知x,y∈R且x2+y2=1,a,b∈R為常數(shù),t=
a2x2+b2y2
 
+
b2x2+a2y2
則(  )
A.t有最大值也有最小值
B.t有最大值無最小值
C.t有最小值無最大值
D.t既無最大值也無最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖北省部分重點(diǎn)中學(xué)高三(上)起點(diǎn)數(shù)學(xué)試卷(理科)(鐘祥一中命題)(解析版) 題型:選擇題

已知x,y∈R且x2+y2=1,a,b∈R為常數(shù),則( )
A.t有最大值也有最小值
B.t有最大值無最小值
C.t有最小值無最大值
D.t既無最大值也無最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:《選考內(nèi)容》2013年高三數(shù)學(xué)一輪復(fù)習(xí)單元訓(xùn)練(北京郵電大學(xué)附中)(解析版) 題型:選擇題

已知x,y∈R且x2+y2=1,a,b∈R為常數(shù),則( )
A.t有最大值也有最小值
B.t有最大值無最小值
C.t有最小值無最大值
D.t既無最大值也無最小值

查看答案和解析>>

同步練習(xí)冊(cè)答案