(1)判斷函數(shù)上的單調(diào)性;
(2)若,求不等式的解集
(1)上是遞減的(2)
(1)任取,則,此時(shí)。由于時(shí),

 …………………………………6分
因此上是遞減的…………………………………7分
(2)由于對(duì)任意實(shí)數(shù),均成立,故不等式化為
…………………………………9分
 則
不等式又可化為…………………………………10分
上是減函數(shù),因此 即解集為………………12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

用定義證明:函數(shù)上是增函數(shù). 
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知函數(shù)。
(1)設(shè),求函數(shù)的極值;
(2)若,且當(dāng)時(shí),12a恒成立,試確定的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

,
(I)若時(shí),函數(shù)在其定義域是增函數(shù),求b的取值范圍。
(II)在(I)的結(jié)論下,設(shè)函數(shù), ,求函數(shù)的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題


的偶函數(shù),其圖象關(guān)于點(diǎn)對(duì)稱,且在區(qū)間上是單調(diào)
函數(shù).求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題



(1)求的最小正周期和單調(diào)增區(qū)間;
(2)當(dāng)時(shí),函數(shù)的最大值與最小值的和,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

判斷函數(shù)f(x)=在定義域上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)處取得最小值
(1)求的表達(dá)式;
(2)若任意實(shí)數(shù)都滿足等式為多項(xiàng)式,),試用表示;
(3)設(shè)圓的方程為,圓外切,為各項(xiàng)都是正數(shù)的等比數(shù)列,記為前個(gè)圓的面積之和,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

,則;

查看答案和解析>>

同步練習(xí)冊(cè)答案