已知函數(shù)(為常數(shù),是自然對(duì)數(shù)的底數(shù)),曲線在點(diǎn)處的切線與軸平行.
(Ⅰ)求的值;
(Ⅱ)求的單調(diào)區(qū)間;
(Ⅲ)設(shè),其中為的導(dǎo)函數(shù).證明:對(duì)任意.
(1)
(2)在區(qū)間內(nèi)為增函數(shù);在內(nèi)為減函數(shù).
(3)構(gòu)造函數(shù)借助于導(dǎo)數(shù)分析函數(shù)單調(diào)性,進(jìn)而得到求解最值來(lái)得到證明。
【解析】
試題分析:解析:由f(x) = 可得,而,即,解得; 4分
(Ⅱ),令可得,
當(dāng)時(shí),;當(dāng)時(shí),.
于是在區(qū)間內(nèi)為增函數(shù);在內(nèi)為減函數(shù). 8分
(Ⅲ),
(1)當(dāng)時(shí), ,. 10分
(2)當(dāng)時(shí),要證.
只需證即可
設(shè)函數(shù).
則,
則當(dāng)時(shí),
令解得,
當(dāng)時(shí);當(dāng)時(shí),
則當(dāng)時(shí),且,
則,于是可知當(dāng)時(shí)成立
綜合(1)(2)可知對(duì)任意x>0,恒成立. 14分
另證1:設(shè)函數(shù),則,
則當(dāng)時(shí),
于是當(dāng)時(shí),要證,
只需證即可,
設(shè),,
令解得,
當(dāng)時(shí);當(dāng)時(shí),
則當(dāng)時(shí),
于是可知當(dāng)時(shí)成立
綜合(1)(2)可知對(duì)任意x>0,恒成立.
另證2:根據(jù)重要不等式當(dāng)時(shí),即,
于是不等式,
設(shè),,
令解得,
當(dāng)時(shí);當(dāng)時(shí),
則當(dāng)時(shí),
于是可知當(dāng)時(shí)成立.
考點(diǎn):導(dǎo)數(shù)的運(yùn)用
點(diǎn)評(píng):主要是考查了導(dǎo)數(shù)來(lái)判定函數(shù)單調(diào)性,以及求解最值,證明不等式的運(yùn)用,屬于難度題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù)(k為常數(shù)),是函數(shù)圖像上的點(diǎn).
(1)求實(shí)數(shù)k的值及函數(shù)的解析式;
(2)將的圖像按向量平移得到函數(shù)y=g(x)的圖像.
若對(duì)任意的恒成立,試求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù)(k為常數(shù)),是函數(shù)圖像上的點(diǎn).
(1)求實(shí)數(shù)k的值及函數(shù)的解析式;
(2)將的圖像按向量平移得到函數(shù)y=g(x)的圖像.
若對(duì)任意的恒成立,試求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆河北省高三上學(xué)期第一次月考理科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知函數(shù)(為常數(shù))是奇函數(shù),則實(shí)數(shù)為( )
A. 1 B. C. 3 D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆山西省高二下學(xué)期期中考試數(shù)學(xué)理科試卷(解析版) 題型:解答題
已知函數(shù)(為常數(shù),是自然對(duì)數(shù)的底數(shù))是實(shí)數(shù)集上的奇函數(shù).
(1)求的值;
(2)試討論函數(shù)的零點(diǎn)的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年福建師大附中高三上學(xué)期期中考試?yán)砜茢?shù)學(xué)卷 題型:解答題
(本小題12分)已知函數(shù)(為常數(shù))是實(shí)數(shù)集上的奇函數(shù),函數(shù)是區(qū)間[-1,1]上的減函數(shù).
(I)求的值;
(II)若在及所在的取值范圍上恒成立,求的取值范圍;
(Ⅲ)討論關(guān)于的方程的根的個(gè)數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com