【題目】

函數(shù)是定義在上的奇函數(shù),且。

1)求實數(shù)a,b,并確定函數(shù)的解析式;

2)判斷在(-1,1)上的單調(diào)性,并用定義證明你的結(jié)論;

3)寫出的單調(diào)減區(qū)間,并判斷有無最大值或最小值?如有,寫出最大值或最小值。(本小問不需要說明理由)

【答案】12)見解析(3)單調(diào)減區(qū)間為x=-1時,,當x=1時,。

【解析】

試題(1)先根據(jù)函數(shù)為奇函數(shù)()求出值,再利用求出值,即可其解析式;(2)利用函數(shù)的單調(diào)性定義進行判定與證明;(3)結(jié)合(2)問容易得到單調(diào)遞減區(qū)間,進而寫出最值.

解題思路:1)求解析式的一種主要方法是待定系數(shù)法;(2)利用函數(shù)單調(diào)性的定義證明函數(shù)的單調(diào)性的一般步驟為:設(shè)值代值、作差變形、判定符號、下結(jié)論.

試題解析:(1是奇函數(shù),

,

,又,,,

2)任取,且,

,

,,,

在(-1,1)上是增函數(shù)。

3)單調(diào)減區(qū)間為

x=-1時,,當x=1時,.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A={x|2-a≤x≤2+a},B={x|x≤1或x≥4}.

(1)當a=3時,求A∩B;

(2)若a>0,且A∩B=,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,直線的參數(shù)方程為為參數(shù)),以坐標原點為極點,以軸正半軸為極軸建立極坐標系,曲線的極坐標方程為,直線與曲線交于兩點.

(1)求直線的普通方程和曲線的直角坐標方程;

(2)若點的極坐標為的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某產(chǎn)品生產(chǎn)廠家生產(chǎn)一種產(chǎn)品,每生產(chǎn)這種產(chǎn)品 (百臺),其總成本為萬元,其中固定成本為42萬元,且每生產(chǎn)1百臺的生產(chǎn)成本為15萬元總成本固定成本生產(chǎn)成本銷售收入萬元滿足假定該產(chǎn)品產(chǎn)銷平衡即生產(chǎn)的產(chǎn)品都能賣掉,根據(jù)上述條件,完成下列問題:

寫出總利潤函數(shù)的解析式利潤銷售收入總成本

要使工廠有盈利,求產(chǎn)量的范圍;

工廠生產(chǎn)多少臺產(chǎn)品時,可使盈利最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某葡萄基地的種植專家發(fā)現(xiàn),葡萄每株的收獲量(單位: )和與它“相近”葡萄的株數(shù)具有線性相關(guān)關(guān)系(所謂兩株作物“相近”是指它們的直線距離不超過),并分別記錄了相近葡萄的株數(shù)為1,2,3,4,5,6,7時,該葡萄每株收獲量的相關(guān)數(shù)據(jù)如下:

1

2

3

5

6

7

15

13

12

10

9

7

(1)求該葡萄每株的收獲量關(guān)于它“相近”葡萄的株數(shù)的線性回歸方程及的方差

(2)某葡萄專業(yè)種植戶種植了1000株葡萄,每株“相近”的葡萄株數(shù)按2株計算,當年的葡萄價格按10元/ 投入市場,利用上述回歸方程估算該專業(yè)戶的經(jīng)濟收入為多少萬元;(精確到0.01)

(3)該葡萄基地在如圖所示的正方形地塊的每個格點(指縱、橫直線的交叉點)處都種了一株葡萄,其中每個小正方形的面積都為,現(xiàn)在所種葡萄中隨機選取一株,求它的收獲量的分布列與數(shù)學期望.(注:每株收獲量以線性回歸方程計算所得數(shù)據(jù)四舍五入后取的整數(shù)為依據(jù))

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù),,其中

1)若是關(guān)于的不等式的解,求的取值范圍;

2)求函數(shù)上的最小值;

3)若對任意的,不等式恒成立,求的取值范圍;

4)當時,令,試研究函數(shù)的單調(diào)性,求在該區(qū)間上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某品牌經(jīng)銷商在一廣場隨機采訪男性和女性用戶各50名,其中每天玩微信超過6小時的用戶列為“微信控”,否則稱其為“非微信控”,調(diào)查結(jié)果如下:

微信控

非微信控

合計

男性

26

24

50

女性

30

20

50

合計

56

44

100

(1)根據(jù)以上數(shù)據(jù),能否有95%的把握認為“微信控”與“性別”有關(guān)?

(2)現(xiàn)從調(diào)查的女性用戶中按分層抽樣的方法選出5人,再隨機抽取3人贈送禮品,記這3人中“微信控”的人數(shù)為試求的分布列和數(shù)學期望.

參考公式: ,其中.

參考數(shù)據(jù):

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.455

0.708

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某單位有員工1000名,平均每人每年創(chuàng)造利潤10萬元.為增加企業(yè)競爭力,決定優(yōu)化產(chǎn)業(yè)結(jié)構(gòu),調(diào)整出名員工從事第三產(chǎn)業(yè),調(diào)整后平均每人每年創(chuàng)造利潤為萬元,剩下的員工平均每人每年創(chuàng)造的利潤可以提高

(1)若要保證剩余員工創(chuàng)造的年總利潤不低于原來1000名員工創(chuàng)造的年總利潤,則最多調(diào)整出多少名員工從事第三產(chǎn)業(yè)?

(2)若要保證剩余員工創(chuàng)造的年總利潤不低于原來1000名員工創(chuàng)造的年總利潤條件下,若要求調(diào)整出的員工創(chuàng)造出的年總利潤始終不高于剩余員工創(chuàng)造的年總利潤,則的取值范圍是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)當時,求函數(shù)在點處的切線方程;

(Ⅱ)當時,討論的單調(diào)性;

(Ⅲ)是否存在實數(shù),對任意,且恒成立?

若存在,求出的取值范圍;若不存在,說明理由。

查看答案和解析>>

同步練習冊答案