已知函數(shù)y=f(x)是定義在R上且以3為周期的奇函數(shù),當(dāng)x∈時,f(x)=ln(x2-x+1),則函數(shù)f(x)在區(qū)間[0,6]上的零點個數(shù)為(  )

A.3 B.5 C.7 D.9

 

C

【解析】當(dāng)x∈時,-x∈,f(x)=-f(-x)=-ln(x2+x+1);則f(x)在區(qū)間上有3個零點(在區(qū)間上有2個零點).根據(jù)函數(shù)周期性,可得f(x)在上也有3個零點,在上有2個零點.故函數(shù)f(x)在區(qū)間[0,6]上一共有7個零點.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動練習(xí)(六)(解析版) 題型:解答題

已知函數(shù)f(x)=sin 2x-cos2x-,x∈R.

(1)求函數(shù)f(x)的最小值和最小正周期;

(2)設(shè)△ABC的內(nèi)角A、B、C的對邊分別為a、b、c,且c=,f(C)=0,若sin B=2sin A,求a,b的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動練習(xí)(二)(解析版) 題型:解答題

已知函數(shù)f(x)=x3-3ax2+3x+1.

(1)設(shè)a=2,求f(x)的單調(diào)區(qū)間;

(2)設(shè)f(x)在區(qū)間(2,3)中至少有一個極值點,求a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動練習(xí)(二)(解析版) 題型:選擇題

“θ≠”是“cos θ≠”的(  )

A.充分不必要條件

B.必要不充分條件

C.充要條件

D.既不充分也不必要條件

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動練習(xí)(三)(解析版) 題型:解答題

設(shè)函數(shù)f(x)=cos+2cos2,x∈R.

(1)求f(x)的值域;

(2)記△ABC的內(nèi)角A、B、C的對邊長分別為a、b、c,若f(B)=1,b=1,c=,求a的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動練習(xí)(三)(解析版) 題型:選擇題

已知函數(shù)f(x)=ax-1+3(a>0且a≠1)的圖象過一個定點P,且點P在直線mx+ny-1=0(m>0,且n>0)上,則的最小值是(  )

A.12 B.16 C.25 D.24

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動練習(xí)(一)(解析版) 題型:解答題

設(shè)函數(shù)f(x)=ex-ax-2.

(1)求f(x)的單調(diào)區(qū)間;

(2)若a=1,k為整數(shù),且當(dāng)x>0時,(x-k)f′(x)+x+1>0,求k的最大值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動練習(xí)(一)(解析版) 題型:選擇題

命題p:{2}∈{1,2,3},q:{2}⊆{1,2,3},下述判斷:①p或q為真;②p或q為假;③p且q為真;④p且q為假;⑤非p為真;⑥非q為假.其中正確的個數(shù)為 (  )

A.2 B.3 C.4 D.5

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評估檢測 第十章 算法初步、統(tǒng)計、統(tǒng)計案例(解析版) 題型:選擇題

(2014·濱州模擬)在區(qū)域內(nèi)任取一點P,則點P落在單位圓x2+y2=1內(nèi)的概率為(  )

A.  B. C.   D.

 

查看答案和解析>>

同步練習(xí)冊答案