古希臘數(shù)學(xué)家丟番圖(公元250年前后)在《算術(shù)》中就提到了一元二次方程的問(wèn)題,不過(guò)當(dāng)時(shí)古希臘人還沒(méi)有尋求到它的求根公式,只能用圖解等方法來(lái)求解。在歐幾里得的《幾何原本》中,形如(a>0,b>0)的方程的圖解法是:如圖,以和b為兩直角邊做Rt△ABC,再在斜邊上截取,則AD的長(zhǎng)就是所求方程的解。

(1)請(qǐng)用含字母a、b的代數(shù)式表示AD的長(zhǎng)。

(2)請(qǐng)利用你已學(xué)的知識(shí)說(shuō)明該圖解法的正確性,并說(shuō)說(shuō)這種解法的遺憾之處。

答案:(1)              

(2) 用求根公式求得: 

正確性:AD的長(zhǎng)就是方程的正根。 

憾之處:圖解法不能表示方程的負(fù)根

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

同步練習(xí)冊(cè)答案