函數(shù)的定義域為,若存在閉區(qū)間,使得函數(shù)滿足以下兩個條件:(1)在[m,n]上是單調(diào)函數(shù);(2) 在[m,n]上的值域為[2m,2n],則稱區(qū)間[m,n]為的“倍值區(qū)間”.下列函數(shù)中存在“倍值區(qū)間”的有           (填上所有正確的序號)
=x2(x≥0);      ②=ex(x∈R);
=;④=
①③④

試題分析:函數(shù)中存在“倍值區(qū)間”,則:(1)內(nèi)是單調(diào)函數(shù);(2),或,①,若存在“倍值區(qū)間” ,則,∴,∴,∴,故存在“倍值區(qū)間” ;②,若存在“倍值區(qū)間” ,則,∴,構(gòu)建函數(shù),∴,∴函數(shù)在上單調(diào)減,在上單調(diào)增,∴函數(shù)在處取得極小值,且為最小值, ∵,∴無解,故函數(shù)不存在“倍值區(qū)間”;
,,若存在“倍值區(qū)間” ,
,∴,∴,故存在“倍值區(qū)間” ;④,不妨設(shè),則函數(shù)在定義域內(nèi)為單調(diào)增函數(shù),若存在“倍值區(qū)間” ,則,∴,則方程,即,由于該方程有兩個不等的正根,故存在“倍值區(qū)間” ;綜上知,所給函數(shù)中存在“倍值區(qū)間”的有①③④,故答案為:①③④.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

求下列函數(shù)的定義域:
(1) y=+lg(3x+1);
(2) y=.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)f(x)=+lg的定義域是(  )
A.(2,4)B.(3,4)
C.(2,3)∪(3,4]D.[2,3)∪(3,4)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

函數(shù)y=的定義域是________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)f(x)=exsin x在區(qū)間上的值域為   (  ).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

函數(shù)的定義域是     

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

下列函數(shù)中定義域為R,且是奇函數(shù)的是(      )
A.=x2+xB.=tanx
C.=x+sinxD.=

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

函數(shù)的定義域為       

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

函數(shù)的定義域為________.

查看答案和解析>>

同步練習冊答案