【題目】下列說(shuō)法正確的是( 。

A.,則的逆命題是真命題

B.,則的逆否命題為假命題

C.的否定是

D.為假命題,則均為假命題

【答案】C

【解析】

選項(xiàng)A:寫(xiě)出原命題的逆命題,再根據(jù)不等式的性質(zhì)進(jìn)行判斷即可;

選項(xiàng)B:根據(jù)逆否命題與原命題是等價(jià)命題,判斷原命題的真假即可;

選項(xiàng)C:根據(jù)特征命題的否定的性質(zhì)進(jìn)行判斷即可;

選項(xiàng)D:根據(jù)且命題的真假判斷的方法進(jìn)行判斷即可.

選項(xiàng)A:若,則的逆命題是:若,則,當(dāng)時(shí),不等式不成立,故若,則是假命題,因此本說(shuō)法是錯(cuò)誤的;

選項(xiàng)B:由一定能推出.因?yàn)槟娣衩}與原命題是等價(jià)命題,所以若,則的逆否命題為真命題,因此本說(shuō)法是錯(cuò)誤的;

選項(xiàng)C:根據(jù)特征命題否定的性質(zhì)可知:的否定是

因此本說(shuō)法是正確的;

選項(xiàng)D:根據(jù)且命題的真假性質(zhì)可知:兩個(gè)命題中只要有一個(gè)是假命題,它們的且命題就是假命題,不一定兩個(gè)命題同時(shí)為假命題,因此本說(shuō)法是錯(cuò)誤的.

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給正有理數(shù)、,,,且不同時(shí)成立),按以下規(guī)則排列:① ,則排在前面;② ,且,則排在的前面,按此規(guī)則排列得到數(shù)列.

(例如:.

1)依次寫(xiě)出數(shù)列的前10項(xiàng);

2)對(duì)數(shù)列中小于1的各項(xiàng),按以下規(guī)則排列:①各項(xiàng)不做化簡(jiǎn)運(yùn)算;②分母小的項(xiàng)排在前面;③分母相同的兩項(xiàng),分子小的項(xiàng)排在前面,得到數(shù)列,求數(shù)列的前10項(xiàng)的和,前2019項(xiàng)的和;

3)對(duì)數(shù)列中所有整數(shù)項(xiàng),由小到大取前2019個(gè)互不相等的整數(shù)項(xiàng)構(gòu)成集合,的子集滿足:對(duì)任意的,有,求集合中元素個(gè)數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)擁有3條相同的生產(chǎn)線,每條生產(chǎn)線每月至多出現(xiàn)一次故障.各條生產(chǎn)線是否出現(xiàn)故障相互獨(dú)立,且出現(xiàn)故障的概率為.

1)求該企業(yè)每月有且只有1條生產(chǎn)線出現(xiàn)故障的概率;

2)為提高生產(chǎn)效益,該企業(yè)決定招聘名維修工人及時(shí)對(duì)出現(xiàn)故障的生產(chǎn)線進(jìn)行維修.已知每名維修工人每月只有及時(shí)維修1條生產(chǎn)線的能力,且每月固定工資為1萬(wàn)元.此外,統(tǒng)計(jì)表明,每月在不出故障的情況下,每條生產(chǎn)線創(chuàng)造12萬(wàn)元的利潤(rùn);如果出現(xiàn)故障能及時(shí)維修,每條生產(chǎn)線創(chuàng)造8萬(wàn)元的利潤(rùn);如果出現(xiàn)故障不能及時(shí)維修,該生產(chǎn)線將不創(chuàng)造利潤(rùn),以該企業(yè)每月實(shí)際獲利的期望值為決策依據(jù),在之中選其一,應(yīng)選用哪個(gè)?(實(shí)際獲利=生產(chǎn)線創(chuàng)造利潤(rùn)-維修工人工資)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=A cos(ωxφ)(A>0,ω>0)的部分圖象如圖所示,下面結(jié)論錯(cuò)誤的是(  )

A. 函數(shù)f(x)的最小正周期為

B. 函數(shù)f(x)的圖象可由g(x)=Acos ωx的圖象向右平移個(gè)單位長(zhǎng)度得到

C. 函數(shù)f(x)的圖象關(guān)于直線x對(duì)稱

D. 函數(shù)f(x)在區(qū)間上單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)aR,函數(shù)f(x)=x|x-a|-a.

(1) f(x)為奇函數(shù),求a的值;

(2) 若對(duì)任意的x[2,3],f(x)≥0恒成立,求a的取值范圍;

(3) 當(dāng)a>4時(shí),求函數(shù)y=f(f(x)+a)零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某城市為了解游客人數(shù)的變化規(guī)律,提高旅游服務(wù)質(zhì)量,收集并整理了20171月至201912月期間月接待游客量(單位:萬(wàn)人)的數(shù)據(jù),繪制了下面的折線圖.根據(jù)該折線圖,下列結(jié)論錯(cuò)誤的是( 。

A.年接待游客量逐年增加

B.各年的月接待游客量高峰期大致在8

C.20171月至12月月接待游客量的中位數(shù)為30萬(wàn)人

D.各年1月至6月的月接待游客量相對(duì)于7月至12月,波動(dòng)性更小,變化比較平穩(wěn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于函數(shù)有下述四個(gè)結(jié)論:①若,則;②的圖象關(guān)于點(diǎn)對(duì)稱;③函數(shù)上單調(diào)遞增;④的圖象向右平移個(gè)單位長(zhǎng)度后所得圖象關(guān)于軸對(duì)稱.其中所有正確結(jié)論的編號(hào)是( )

A.①②④B.①②C.③④D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知為實(shí)數(shù),函數(shù),且函數(shù)是偶函數(shù),函數(shù)在區(qū)間上的減函數(shù),且在區(qū)間上是增函數(shù).

1)求函數(shù)的解析式;

2)求實(shí)數(shù)的值;

3)設(shè),問(wèn)是否存在實(shí)數(shù),使得在區(qū)間上有最小值為?若存在,求出的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓經(jīng)過(guò)點(diǎn),,點(diǎn)為橢圓的右頂點(diǎn),直線與橢圓相交于不同于點(diǎn)的兩個(gè)點(diǎn).

1)求橢圓的標(biāo)準(zhǔn)方程;

2)當(dāng)時(shí),求面積的最大值;

3)若,求證:為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案