如圖,正方形ABCD的邊長(zhǎng)為2,點(diǎn)P是線段BC上的動(dòng)點(diǎn),則(
PB
+
PD
)•
PC
的最小值為
 
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:平面向量及應(yīng)用
分析:建立平面直角坐標(biāo)系A(chǔ)-xy,設(shè)P(2,x),則
PB
=(0,-x),x∈[0,2],
PD
=(-2,2-x),
PC
=(0,2-x),利用x 表示(
PB
+
PD
)•
PC
的函數(shù)求最值.
解答: 解:建立平面直角坐標(biāo)系A(chǔ)-xy,設(shè)P(2,x),
PB
=(0,-x),x∈[0,2],
PD
=(-2,2-x),
PC
=(0,2-x),
所以(
PB
+
PD
)•
PC
=2x2-6x+4=2(x-1.5)2+4-4.5,
因?yàn)閤∈[0,2],
所以x=1.5時(shí),(
PB
+
PD
)•
PC
的最小值為-0.5即-
1
2
;
故答案為:-
1
2
點(diǎn)評(píng):本題考查了向量的數(shù)量積以及二次函數(shù)閉區(qū)間的最值,關(guān)鍵是建立坐標(biāo)系,將問(wèn)題轉(zhuǎn)化為二次函數(shù)的最值求法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知tanα=2,則
2cos(
π
2
+α)-cos(π-α)
cosα+3sinα
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在扇形OAB中,∠AOB=60°,C為弧AB上的一個(gè)動(dòng)點(diǎn).若
OC
=x
OA
+y
OB
,求x+3y的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知點(diǎn)P為Rt△ABC的斜邊AB的延長(zhǎng)線上一點(diǎn),且PC與Rt△ABC的外接圓相切,過(guò)點(diǎn)C作AB的垂線,垂足為D,若PA=18,PC=6,求線段CD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=alnx+bx(a,b∈R)在x=
1
2
處取得極值,且曲線y=f(x)在點(diǎn)(1,f(1))處的切線與直線x-y+1=0垂直.
(1)求實(shí)數(shù)a、b的值;
(2)若對(duì)任意x∈[1,+∞),不等式f(x)≤(m-2)x-
m
x
恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)y=f(x)(x∈R)滿足f(x+2)=f(x),且x∈[-1,1]時(shí),f(x)=2x+x
1
3
,則f(2014)等于( 。
A、3B、2C、1D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

雙曲線
x2
2
-y2=1的漸近線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,已知O是線段AB的中點(diǎn),M是平面上任意一點(diǎn),試證明
MA
+
MB
=
MO
+
MO

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知C為線段AB的中點(diǎn),P為直線AB外一點(diǎn),滿足|
PA
|=|
PB
|=3,|
PA
-
PB
|=4,
PI
IC
BI
=m(
AC
|
AC
|
+
AP
|
AP
|
)+
BA
,m>0,則λ=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案