若(x+1)5=a0+a1(x-1)+a2(x-1)2+…+a5(x-1)5,則-a0+a1-a2+a3-a4+a5=( 。
A、0B、1C、-1D、-32
考點(diǎn):二項(xiàng)式系數(shù)的性質(zhì)
專(zhuān)題:二項(xiàng)式定理
分析:在所給的等式中,令x=0,可得-a0+a1-a2+a3-a4+a5的值.
解答: 解:在(x+1)5=a0+a1(x-1)+a2(x-1)2+…+a5(x-1)5 中,令x=0,可得-a0+a1-a2+a3-a4+a5=1,
故選:C.
點(diǎn)評(píng):本題主要考查二項(xiàng)式定理的應(yīng)用,注意根據(jù)題意,分析所給代數(shù)式的特點(diǎn),通過(guò)給二項(xiàng)式的x賦值,求展開(kāi)式的系數(shù)和,可以簡(jiǎn)便的求出答案,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知極坐標(biāo)系的極點(diǎn)O與直角坐標(biāo)系的原點(diǎn)O重合,極軸Ox與x軸非負(fù)半軸重合,且兩坐標(biāo)系單位長(zhǎng)度相同,則直線l:ρcosθ=2與圓C:
x=2cosφ
y=2+2sinφ
(0≤φ<2π)的位置關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

執(zhí)行如圖的程序框圖,若輸入的p=0.8,則輸出的n的值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

長(zhǎng)方體表面積為24cm2,各棱長(zhǎng)總和為24cm,則其對(duì)角線長(zhǎng)為
 
cm..

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以正方體的任意4個(gè)頂點(diǎn)為頂點(diǎn)的幾何形體有
 

①空間四邊形;
②每個(gè)面都是等邊三角形的四面體;
③最多三個(gè)面是直角三角形的四面體;
④有三個(gè)面為等腰直角三角形,有一個(gè)面為等邊三角形的四面體.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)直線過(guò)點(diǎn)(0,a),其斜率為1,且與圓x2+y2=2相切,則a的值為( 。
A、±
2
B、±2
2
C、±2
D、±4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
2x,x≤0
f(x-3),x>0
,則f(5)的值等于(  )
A、
1
2
B、
3
2
C、8
D、24

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
1
3
x-lnx(x>0),那么函數(shù)y=f(x)( 。
A、在區(qū)間(
1
e
,1)內(nèi)無(wú)零點(diǎn),在區(qū)間(1,e)內(nèi)有零點(diǎn)
B、在區(qū)間(
1
e
,1)內(nèi)有零點(diǎn),在區(qū)間(1,e)內(nèi)無(wú)零點(diǎn)
C、在區(qū)間(
1
e
,1),(1,e)內(nèi)均有零點(diǎn)
D、在區(qū)間(
1
e
,1),(1,e)內(nèi)均無(wú)零點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

i是虛數(shù)單位,
i
1+i
的虛部等于( 。
A、0
B、-
1
2
C、1
D、
1
2

查看答案和解析>>

同步練習(xí)冊(cè)答案