雙曲線x2-my2=1的實(shí)軸長(zhǎng)是虛軸長(zhǎng)的2倍,則m= ( )
A. B. C.2 D.4
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測(cè)試選擇填空限時(shí)訓(xùn)練3練習(xí)卷(解析版) 題型:選擇題
函數(shù)f(x)=ln(x2+1)的圖象大致是( )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測(cè)試專題6第2課時(shí)練習(xí)卷(解析版) 題型:填空題
在區(qū)間[-2,4]上隨機(jī)地取一個(gè)數(shù)x,若x滿足|x|≤m的概率為,則m=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測(cè)試專題5第3課時(shí)練習(xí)卷(解析版) 題型:解答題
已知橢圓E:=1(a>b>0)的右焦點(diǎn)為F,過原點(diǎn)和x軸不重合的直線與橢圓E相交于A,B兩點(diǎn),且|AF|+|BF|=2,|AB|的最小值為2.
(1)求橢圓E的方程;
(2)若圓x2+y2=的切線L與橢圓E相交于P,Q兩點(diǎn),當(dāng)P,Q兩點(diǎn)橫坐標(biāo)不相等時(shí),OP(O為坐標(biāo)原點(diǎn))與OQ是否垂直?若垂直,請(qǐng)給出證明;若不垂直,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測(cè)試專題5第2課時(shí)練習(xí)卷(解析版) 題型:填空題
已知雙曲線C1:=1(a>0,b>0)與雙曲線C2:=1有相同的漸近線,且C1的右焦點(diǎn)為F(,0),則a=________,b=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測(cè)試專題5第1課時(shí)練習(xí)卷(解析版) 題型:填空題
過直線x+y-2 =0上點(diǎn)P作圓x2+y2=1的兩條切線,若兩條切線的夾角是60°,則點(diǎn)P的坐標(biāo)是____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測(cè)試專題5第1課時(shí)練習(xí)卷(解析版) 題型:選擇題
點(diǎn)A(1,3)關(guān)于直線y=kx+b對(duì)稱的點(diǎn)是B(-2,1),則直線y=kx+b在x軸上的截距是( )
A.- B. C.- D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測(cè)試專題4第2課時(shí)練習(xí)卷(解析版) 題型:選擇題
已知命題“如果x⊥y,y∥z,則x⊥z”是假命題,那么字母x,y,z在空間所表示的幾何圖形可能是( )
A.全是直線 B.全是平面
C.x,z是直線,y是平面 D.x,y是平面,z是直線
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測(cè)試專題2第4課時(shí)練習(xí)卷(解析版) 題型:解答題
已知向量a=(cos α,sin α),b=(cos x,sin x),c=(sin x+2sin α,cos x+2cos α),其中0<α<x<π.
(1)若α=,求函數(shù)f(x)=b·c的最小值及相應(yīng)x的值;
(2)若a與b的夾角為,且a⊥c,求tan 2α的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com